
RLT2-v4.3 Robotics 1

Robotics 1

RLT Robotics Learning Track

Module for Level 2

Version 4.3 – Sept 2012

RLT2-v4.3 Robotics 2

Colophon

This Robotics module is part of the RoboDidactics Robotics Learning Track

(RLT). The material presented in this module is based on the Dutch

Robotics material developed by the author for the SLO Certified Robotics

Module.

All the original and associated material for the RoboDidactics Learning

Track may be downloaded from the Phyrtual site or from the RoboPal for

NXT site at www.virtualbreadboard.com. It can also be found in the English

download section of www.robocupjunior.nl. Teachers are permitted to

modify this material for use in their own lessons, provided these changes

are reported in the colophon of the modified material. The Phyrtual site

can be reached through www.phyrtual.org.

This module was developed and translated by the author (Peter van Lith)

as part of a cooperation agreement with the Fondazione Mondo Digitale in

Rome, Italy in 2010. The RoboPAL software used in this version has been

developed with VirtualBreadBoard by James Caska.

This version is developed for use with the Lego MindStorms NXT and

RoboPAL software. A more extensive version is available (currently only

in Dutch). It is based on robots that can be programmed in Java, using

the Java Simulator and Eclipse.

This NXT version is easy to use because it uses a graphical programming

language.

The module consists of three parts. The first is the basic version needed

for all further lessons. The second part deals with the RoboCup Junior

Rescue challenge. The more demanding third part is optional and deals

with a simple simulated organism, based on reactive behaviour.

Modified versions of this module may only be distributed if this colophon

states that it is a modified version, including the name of the author of the

modifications.

© 2010/12. Version 4.3

The copyright of this module rests with RoboCup Junior Netherlands that is

the owner under the terms of the creative commons license as mentioned

below.

The authors of this module have used material from third parties during its

development and have received permission to use this material. During

research into the rights of text and illustrations, we have acted carefully.

http://www.virtualbreadboard.com/
http://www.robocupjunior.nl/
http://www.phyrtual.org/

RLT2-v4.3 Robotics 3

Should, however, any person or organization deem to have rights to parts

of the text or illustrations, they are advised to contact RoboCup Junior

Netherlands (info@robocupjunior.nl).

This module has been compiled with care and has been tested extensively

by the authors and several test schools. The authors accept no

responsibility for incorrect or incomplete parts of this module, nor do they

accept any claims for damages as a result of using this module or its

associated software.

This module is distributed under the Creative Commons License 3.0,

Netherlands.

►http://creativecommons.org/licenses/by-nc-sa/3.0/nl

http://creativecommons.org/licenses/by-nc-sa/2.5/nl

RLT2-v4.3 Robotics 4

COLOPHON .. 2

PREFACE ... 5

INTRODUCTION .. 6

ROBOTS IN SCI-FI FILMS .. 6
SERVICE ROBOTS ... 7
ENTERTAINMENT ROBOTS ... 8
INDUSTRIAL ROBOTS AND ASSEMBLY ROBOTS ... 8
EDUCATIONAL ROBOTS ... 9

1. GETTING TO KNOW YOUR ROBOT .. 14

THE ROBOT .. 14
TYPES OF SENSORS ... 17
FIELD OF VIEW OF THE DISTANCE SENSOR... 17
THE PROCESSOR .. 18
WHAT IS PROGRAMMING? .. 19
LEGO MINDSTORMS NXT ROBOT COMPONENTS ... 20
ON/OFF SWITCH ... 20
THE BATTERY .. 20
THE PROCESSOR .. 21
SENSOR CONNECTORS .. 21
THE MOTORS ... 21
LCD DISPLAY .. 21
PUSHBUTTONS .. 21
DISTANCE SENSOR ... 21
LIGHT SENSORS ... 22
RESET BUTTON .. 22
USB CONNECTOR .. 22
THE ROBOPAL DONGLE.. 22
WHY USE A SIMULATION PROGRAM? .. 22
PROGRAMMING .. 23

2. GETTING TO KNOW THE SIMULATOR .. 26

USING VIEWS.. 28
ERROR MESSAGES ... 41

3. HOW DOES YOUR ROBOT WORK? .. 47

INSTALLING THE FIRMWARE ... 48
BASIC SETTINGS OF ROBOPAL ... 48
UPLOADING THE PROGRAM ... 50
CHECKING THE BATTERIES ... 50
READING SENSOR VALUES ... 52

4. DRIVING OVER THE RESCUE FIELD .. 55

INDICATORS .. 57
GOING BACK TO AN EARLIER VERSION ... 59

RLT2-v4.3 Robotics 5

Preface

When the pioneers of Artificial Intelligence and Robotics developed the

first programs and robotic devices, they foresaw a world inhabited by

reasoning machines that would be able to make decisions. In this way,

researchers created high expectations for the development of new theories

in model-based reasoning, systems architecture, ethics and other fields.

In the course of the development of intelligent devices, it became clear

that more down-to-earth problems needed to be dealt with first: building

mechanical structures, recognizing objects, avoiding obstacles, finding the

optimal path to a goal, etc. These are the topics that will be addressed in

this module and which are common to all intelligent devices such as

robots.

The subjects treated in this module, which are all part of the robotics

domain, mirror the basic assignments that need to be completed. A Lego

NXT robot with sensors and actuators will be used to carry out a series of

challenging, interesting and increasingly complex assignments.

This module is divided into three parts. The first part (in which the robot

and the software are explained) is necessary to complete the other two

parts. Its main goal is to introduce students to robot hardware (Lego NXT

robot) and software (RoboPAL - Play And Learn). RoboPAL is a software

development environment (IDE) with an integrated simulator. This means

that programs can be developed and tested without a robot, thereby

limiting the hardware requirements necessary at school. Moreover, it also

means that students can work on their programs at home, on their own

computers.

The second part focuses on the RoboCup Junior Rescue Mission and

explains the operation of the Sense-Reason-Act loop. This loop is found in

all robotic systems and lays the foundation for the control of the robot.

This part also provides further information on the design criteria required

to build more complex systems.

The third part provides a deeper explanation of sensors and actuators and

allows students to design and develop more complex and autonomous

systems.

RLT2-v4.3 Robotics 6

Introduction

Background

This Robotics course is divided into three parts that can be studied

independently.

This first part addresses the basics of handling a robot, its development

environment and how to use the RoboPAL programming language.

The second part concentrates on programming the Rescue mission in which

a dangerous container needs to be removed from a swamp.

The first and second parts are suitable for the lower classes of middle

grade schools, while the third part is more demanding and concentrates on

the development of a small Robotics project. It acquaints students with

several aspects of the Artificial Intelligence techniques used in Robotics.

What are Robots?
1

It was not very long ago that computers became a part of our everyday

lives and brought about so many changes. In a period of less than ten

years, the world changed for a large number of people in companies and

then in schools and at home. Nowadays, living without a computer is

unthinkable.

More and more equipment around us contains small computers. These

include TV set remote controls, washing machines and MP3 players. Often

one device may contain several computers. These tiny computers are

known as Embedded Systems. Modern cars, for instance, sometimes have

more than ten of them. In most cases, we do not even know in what

machines they are present and what kind of functions they perform.

The same thing is about to happen, but this time with robots. More and

more often, we see robots taking over difficult or dangerous jobs. So, it is

important to understand what they can do and how they work.

Robots in Sci-Fi Films

Robots play an important role in many science fiction films. You may have

seen Wall-E, the Disney film in which a lonely robot has to clean up waste

on a deserted planet Earth.

1
 The word robot was used for the first time by the Czech writer Karel Čapek in his play R.U.R.

(Rossum's Universal Robots) (1920) and is derived from the Czech word robota, which means ‘work’.

http://nl.wikipedia.org/wiki/Karel_%C4%8Capek
http://nl.wikipedia.org/w/index.php?title=R.U.R.&action=edit&redlink=1
http://nl.wikipedia.org/wiki/1920

RLT2-v4.3 Robotics 7

Fig 1: Wall-E

Fig 2: I Robot

Fig 3: Service Robot

In films like I Robot, we see a robot jump from a window on the 5th floor

and leap over cars. These are things that people will never be able to do.

So, what can modern robots actually do? Will we ever have robots that can

do what we see in these movies?

Service Robots

The robots that we are speaking about are called service robots. More and

more elderly people require care and assistance, but we are less and less

capable of providing it. Many manufacturers are developing robots that can

help with domestic tasks, such as making beds or reading out books, but

we also need robots that can be used for security purposes in our homes

(i.e., fire alarms or to check if somebody has fallen over).

Honda and Toyota have been building robots for years with the goal of

providing good assistants for our homes.

There is also a great deal of

interest in robots that can help

the elderly (i.e., make sure they

take their medication on time),

but these robots do not exist at

present. Some hospitals are

already using robots to deliver

food and experiments are also

being conducted with Rescue

robots.

Figure 5 shows a robot that is

used to save people in dangerous

situations such as fires, gas leaks

and collapsed buildings.

We also have robotic vacuum

cleaners and lawn mowers (Fig 6).

The behavior of these robots is

very limited. Their movement

pattern is random, which is not

Fig 4: Domestic Robots

Fig 5: Robot in a hospital (left) and Rescue Robot (right)

RLT2-v4.3 Robotics 8

Fig 6: Robot vacuum cleaner (left) and lawn mower (right)

Fig 7: Robo Sapien

Fig 8: Assembly Robots

Fig 9: AGV

Fig 10: Salvage Robot

very economical for finding dust

and grass to cut. Also, in order to

let the lawn mower “know”

where the grass is, a special wire

must to be placed around the

field to be mowed.

 Entertainment Robots

As Robotics has not advanced far enough to make robots that

are sufficiently flexible and reliable, a good first step is the use

of robots in the entertainment industry. The demands that we

put on an entertainment robot are not as high as those we

would have, for instance, in a robot meant to help people at

home. If a robot does something wrong in an amusement park

or in a movie, it is funny and has far less severe consequences

than if it did something wrong in a hospital. In this case, a

robotic mistake could cause a significant amount of problems.

Sony has been selling entertainment robots, such as the Aibo,

for many years. We also have robots like the Robo Sapien.

Industrial Robots and Assembly Robots

Robots are also used in industry to

assemble cars and airplanes. They

are used in almost all factories,

but are not as flexible as the

robots that we see in science

fiction movies. Most of these

robots are used to weld, insert

screws or assemble parts such as

printed circuit boards.

A special kind of robot, the so-

called AGV (Automated Guided

Vehicle) is used in Rotterdam

harbor. These vehicles are used to

automatically transport sea-

containers. An increasing number

of robots is also used in the army

for a variety of tasks such as

removing explosives.

RLT2-v4.3 Robotics 9

Fig 11: NXT Robot

Fig 12: the Tulip

Educational Robots

The robots that we will be using in this module are educational

robots. There are many brands on the market, but the Lego

MindStorms is by far the best known. In addition, there also are

other robots, such as the Board Of Education Robot (BOE-bot)

and walking robots such as the RoboNova and the BioLoid.

Universities also develop robots. In the Netherlands, for

example, the three Technical Universities, headed by TU Delft,

are developing a new generation of walking robots: the Tulip of

the Dutch Robotics team.

Building a service robot is a complex exercise, because a variety

of elements must be taken into consideration. In this module,

you will get a good idea of the things a robot needs to be able to

do in order to act as a service robot. You will also see what

knowledge and technology is necessary to design and build a

service robot.

What Must a Service Robot Know and Do?

Two of the aspects that need to be considered during the development of

a service robot are: what will it be used for? and what type of tasks must it

be able to perform? A service robot used as a deep-sea diving assistant will

require different elements than a kitchen robot that needs to handle large

pans and pots. The idea of building the ultimate universal service robot is

probably utopian, but whether or not this will ever be possible, building

such a robot would not be very useful. A specialized robot will function

better and will be cheaper to develop.

There are, however, a number of basic concepts that are valid for all

service robots. A robot needs to be able to find its way around its

environment and react to the changes that take place around it. This

means that a robot must either collect information from its surroundings or

be pre-programmed with the necessary data. Responses may consist in a

direct reaction to a change, comparable to a reflex or the robot could plan

its next step based on the information it collects. Moreover, its reaction

also depends on the amount of time that is necessary for it to react

appropriately.

A robot should be able to execute commands. It should be able to make

decisions based on a variety of conditions. The conditions that a robot

must use are determined by its observations, but also by data that is pre-

programmed and/or collected over time (experience).

RLT2-v4.3 Robotics 10

Fig 13: Lego NXT

Robot

When a robot uses its sensors to collect information from the environment

around it, it has to decide if it can execute a command. Clearly, the best

situation would be for the robot to decide how to perform a given action.

Three elements are involved in such a decision: reaction time, conditions

and execution. Indeed, this is what many researchers are currently

investigating.

What Should Robot Builders Know and Do?

The previous section should have made it clear that a designer, working

alone, faces an impossible task; a team of designers is necessary to

achieve a satisfactory result. Every team member must have an area of

expertise and must explain to the other team members what is necessary

to make a good design.

Such specialists range from programmers to mathematicians and from

structural engineers to psychologists. They all have to address the question

of what function the robot must perform. Questions such as: How big and

how strong must it be? How much energy will it need and for how long?

How will the robot receive its commands ?

The Lego NXT Robot

This Robotics module teaches you how to make a robot perform tasks. We

will use a simple two-wheeled robot that is equipped with several sensors.

Your job is to make your robot remove a dangerous container from a

swamp (not really, it’s a soft-drink can that is placed on a yellow surface,

see Fig. 14). In order to accomplish this task, you will have to program

your robot to behave like Wall-E. Your robot will need to follow the road to

the swamp, then search for the container and push it outside of the

swamp.

The world in which your robot lives has been made a bit simpler than

reality, otherwise the task would be too difficult. Your robot will move

over a field on which a black line leads to the swamp. There, a can or a

small puppet has to be pushed ashore.

An even simpler field is the so-called Grid field, which is divided into

small squares and has no further surface drawings. Both fields are used

separately with the RoboPAL software that you will be using to create your

program. This will be explained in greater detail in the following lessons.

RLT2-v4.3 Robotics 11

Fig 14: Rescue Field

The Leading Thread

We will use small programs to help you become familiar with programming

and learn how to create your own programs. You will then start making

simple programs, followed by more complex programs, to instruct your

robot how to behave. Clearly, the small robot will only be capable of a

limited repertoire of behaviors. In each lesson, we will explain the

relevant principles underlying each type of behavior and how this

knowledge is used in industry, at home or elsewhere.

The robot that we will use in the lessons (if programmed correctly) can

detect colors, drive forward and backward, follow lines and detect and

avoid obstacles. This simple repertoire is all you need to program the

robot to perform some quite interesting actions.

The programs that you are about to work with are examples of the way in

which problems are solved by many devices. Cars, washing machines,

industrial robots and airplanes contain the same technology. This will help

you learn how these machines work. The following subjects will be

addressed:

H# Subject Learning Assignment Working Assignment Examples

1 Getting to know the robot Understanding Sensors
and Processors

Find out what a robot is Where are robots
used?

2 Getting to know the
simulator

Using a simulator Changing a program Flight Simulator

3 How does your robot work? What can a robot do? Making your robot
move

Bridge

4 Making the robot move over
the field

Following patterns Following a fixed track Welding robots

5 Sensors for the ‘Sense’
step

Sense-Reason-Act
loop. Robot- and animal
behaviors.

Observe before acting Automatic doors in
elevators

6 Processing for the ‘Reason’
step

Process Information Line-Follower Automatic Guided
Vehicles

7 Actuators for the ‘Act’ step Moving and Steering Adaptive behavior Self-parking car

8 Adaptive behavior Adapting to the
environment

Not reacting the same
way every time

‘Pick and place’ robots

9 Advanced sensors Sensory information Calibration and object
avoidance

X-rays, infrared and
ultrasound

10 Control systems Feedback in control
systems

React to disturbances TV transmitters
automatic
programming

RLT2-v4.3 Robotics 12

Setup of each Chapter

Every chapter in this module has the same setup:

1. What will you learn?

2. What do you need?

3. What are you going to do?

4. What can you do after studying each chapter?

5. Explanations and Assignments

6. In Practice

7. Test Questions

The Assignments

The idea behind this module is to learn through discovery, insofar as

possible. Therefore, we purposely do not explain everything in great

detail. As it's a new subject, you may discover that some steps are too

difficult, but the main idea is to work out as many things as possible on

your own. Each chapter has a number of optional assignments that you may

skip. To make the lessons more challenging, we hope you will first try to

work on the main assignments and only turn to the optional assignments

when the main prove to be too difficult. Each chapter ends with an

assignment that you will have to complete on your own. You must not skip

these, as they will help you understand the subjects that are treated in

each chapter. You will learn best by trying, making mistakes and

discovering the right answer.

If you cannot complete one of the assignments, turn to the detail

assignments and try them first, until you understand how something works.

Then, go back to the main assignment. By following the detail assignments,

you should find enough information to continue with the main assignment.

Explanation of Pictograms

The symbols used in this module have the following meanings:

Assignment Type Assignment

Detail Assignment (optional)
Find out about something

Assignment on the Grid Field.

Assignment on the Rescue Field

Assignment with RoboPAL (programming)

Assignment on the Simulator (testing)

Assignment on the Robot

RLT2-v4.3 Robotics 13

Fig 15 Pictures of Robots

Assignments

1. Find Out

Use a search engine to find the

meaning of the word ‘robot’. Use

what you have found out to

describe (½ A4) the similarities

and differences between the old

and modern meanings of “robot”.

2. Find Out

Use a search engine to answer

the following questions. (½ A4)

 What is a robot?

 Are there different types of robots?

 What is the difference between a robot and a human?

 If you had to divide all robots into two main groups, what would they

be?

 What is the main difference between these two groups?

RLT2-v4.3 Robotics 14

1. Getting to Know Your Robot

The most important parts of a robot are explained in this chapter. You may

cover this chapter together in the classroom or read it on your own.

If you want to get started right away and read this part later, go to

Chapter 2 and start working with the Simulator.

1.1 You will learn

 what a robot is

 why we are using a simulation program

 about various programming languages

1.2 You will need

 a computer

 a Lego MindStorms NXT Robot

 the RoboPAL development environment

 the simulation program (part of RoboPAL)

1.3 You will experiment with

 the components of the robot and learn to name them

 the how and what of a simulator

 the language used to program a robot

1.4 After following this chapter, you will be able to

 explain the meaning of the terms Robotics and AI (Artificial

Intelligence)

 point out the most important parts of a robot, name them and describe

their functions

1.5 The Lego MindStorms NXT Robot

The Robot

In order to follow these lessons, you will need a robot. Although you can

follow all the lessons just with the simulator that is built into RoboPAL,

using a robot makes the lessons much more interesting.

Only when you run your programs on a real robot will you discover the

differences between a simulator and the real thing. The robot is influenced

by external factors, such as friction, the slippage of wheels, low batteries,

Fig 16: Lego NXT

RLT2-v4.3 Robotics 15

inaccurate sensors, different lighting conditions and many more, that are

absent in the simulator.

These factors will always make your robot react differently from a PC

simulation. We will see more about this in the next chapter.

You will first have to assemble a robot using the Lego MindStorms kit. Most

schools already have these robots and reuse them every year. In this case,

there is no need to build your robot. Otherwise, use a Lego kit and put a

standard robot together. The instructions for this can be found on the CD

that comes with this module or downloaded from the RoboDidactics site

(www.phyrtual.org).

Lego sells various different NXT kits, so the assembly instructions may

refer to parts that are not available with your kit. In this case, you may

need to find an alternative solution to construct your robot. What the

robot looks like is not so important as long as it has two wheels and a

castor wheel, or glider, and two light sensors, pointing to the ground, plus

a distance sensor.

It is important that the motors and sensor are connected in the standard

way to ensure that RoboPAL will function correctly.

The left and right motors must be connected to ports A and C. When we

refer to the left side of the robot, we mean as seen from the position of an

imaginary driver. The driver is always on the left side. So, if you look at

the robot from the front, the left motor is on the right-hand side, just as

with a car. Also, remember that if you mount the motors backward, the

direction of movement will be reversed. The RoboPAL CD contains the

building instructions. So ask your teacher for them or you may also make

your own design. What the robot looks like is not important, as long as all

the parts are connected correctly.

The two light sensors point downward and the underside of these sensors

must be about 1 centimeter from the ground. The distance between the

sensors should be 5-8 centimeters. In RoboPAL, you can specify the spacing

between the light sensors, so the simulator can take this into account. We

will explain how to do this later on. Now, keep a standard distance of 6.5

cm. The sensors must be connected to ports 1 and 4, the outer two ports

just as the motors.

The distance sensor must be connected to port 3. If you were also using a

third light sensor, it would be connected to port 2, but we will not be using

it in these lessons.

So, assemble your robot or make sure you have a previously built one. As

we will be using a simulator, you will only use the robot for short periods

and share it with other students. As a rule of thumb, 4-5 students can

share a robot. If students are working in groups, you may even need fewer.

http://www.phyrtual.org/

RLT2-v4.3 Robotics 16

The Components of a Robot

All robots consist of three essential parts:

1. The brain, consisting of the processor(s) + program(s)

2. The sensory system, consisting of sensors

3. The muscles and skeleton, consisting of actuators and a mechanical

frame.

The processor(s) + program(s) are necessary to process the information

provided by the sensors and to make decisions. Based on these decisions,

the actuators will be switched on or off. The generic name for sensors and

actuators is transducers.

Definition

A transducer is a device that transforms one type of energy or physical

property into another for a variety of purposes, including measurements

and information transfer.

An example of a sensor is a microphone. It is used to transform sound

(mechanical) into an electric signal. An example of an actuator is a motor.

It transforms an electrical signal into movement (mechanical). So, an

input-transducer is a sensor and an output-transducer is an actuator.

The variation in the mechanical construction of robots is enormous. One

specific type includes all wheeled robots that have the following

mechanical components: a chassis, a steering mechanism, a number of

wheels (powered or unpowered) and motors. The combination of the

steering mechanism and separately powered wheels is the most distinctive

property of wheeled robots. A frequently used feature is the so-called

Ackermann2 steering mechanism. Almost all cars and trucks use this

principle.

The steering mechanism that we will use on our Lego NXT is very popular

with small-wheeled robots. It features two independently controlled

wheels and a so-called castor wheel, which often is simply a ball-shaped

object that allows the robot to slide over the ground.

The simplicity of this construction and the easily programmable steering

mechanism makes it very suitable for this kind of robot.

When a robot needs to drive at a high speed or over an uneven terrain,

other steering mechanisms are required, especially when the load on the

wheels or the accuracy of steering are important factors.

In our case, the robot has two independently powered wheels. This type of

steering is often called a differential drive (not to be confused with the

differential, which is a mechanism used in cars to control the back

2
 Designed by the German car designer Georg Lankensperger in 1816 and patented in England

by Rudolph Ackermann.

RLT2-v4.3 Robotics 17

wheels). The difference in speed between the wheels and the distance

between them determine the direction and speed of the robot. This type

of steering mechanism is also known as a wheelchair drive.

Types of Sensors

There are many different types of sensors, subdivided according to the

physical properties that they transform. These include chemical, electrical

and mechanical ones. Some examples are:

 a pressure sensor to ‘feel’ (mechanical)

 a reflection sensor to ‘see (electrical)

 an infrared (IR) sensor to see in the ‘dark’ (electrical)

 an ultrasonic sensor to ‘hear’ (electrical)

 a compass sensor to ‘detect a direction’ (magnetic)

 a gas sensor to detect gasses (chemical).

We can also distinguish between passive and active sensors.

Passive sensors do not need an extra source to detect something: for

example, a camera without an external light source is a passive sensor. On

the other hand, a reflection sensor and an ultrasonic sensor are active

sensors, because they send out a signal and measure the returning signal.

We will use some of these sensors to let our robot sense its environment so

that it can determine where to go to and to check if there are any

obstacles on its way. In particular, we will use the following sensors with

the Lego NXT:

A distance sensor (DS) uses an ultrasonic signal to measure the distance

between an object and itself (the robot in this case) and expresses the

measured distance as a number. The robot uses this mechanism to detect

obstacles.

The reflection sensor (FieldSensor, FS) is also called a ‘ground sensor’. It

emits visible light and measures the amount of reflected light. This type of

sensor allows the robot to detect a black line on the floor. A dark surface

reflects less light and thus returns a lower value.

Field of View of the Distance Sensor

In most cases, sensors that use light or sound have an opening that allows

waves to enter the sensor. This opening, which is called the field of view

(FOV), is often a lens that allows the sensor to see a given area.

When using a distance sensor, the optimal situation would be to measure

the distance in a straight line ahead, especially if the beam could keep the

same width over a longer distance (field of view = 00). A laser can do this,

but it is expensive. An ultrasonic sensor, on the other hand, will always

have a field of view that can be compared to the light beam of a flashlight.

RLT2-v4.3 Robotics 18

Fig 17: Ultrasonic Distance Sensor

The farther away the beam travels from the sensor, the wider it gets. This

also means that the farther the objects are, the larger the detection area

is and the sooner the sensor will react to obstacles. The advantage is that

narrower objects are detected sooner, although it is unclear where exactly

the object is located. Alternatively, a narrow beam provides greater

certainty on the position of an object, but the chance of missing an object

becomes greater. A solution to this situation is to use an array (row) of

overlapping sensors, each with a known field of view. By correlating the

information provided by an array of sensors, it is easier to detect small

objects and determine their position.

We will use an ultrasonic sensor that has a relatively wide field of view

with the Lego NXT. This, unfortunately, often makes it difficult to

accurately measure nearby objects (see fig 17).

Types of Actuators

Actuators are mainly motors. There also are special actuators such as

memory metal and artificial muscles, but these are mostly still research

projects. In addition, there are actuators that let us see or hear things,

like:

 lamps

 LCD screens

 loudspeakers

The Processor

In principle, any kind of PC can be used to control a robot. There are many

robots that have a PC as their brain, but if space and energy consumption

are limiting factors in the design, we need special processors. Moreover,

the price-performance ratio often dictates the use of a less advanced

processor.

The most important demands of a robot are of a different order than those

of a PC. For calculations, accuracy is one of the most important aspects on

a PC. Calculations must be fast, but a precise answer is even more

essential.

A robot has completely different demands. The emphasis is not so much on

the accuracy of a calculation, but the timely availability of a result,

regardless of its accuracy. Which of the following two robots would be

RLT2-v4.3 Robotics 19

more useful? One that can calculate its position with a precision of 100

decimal positions, but that discovers it is falling off a bridge because there

was not enough time to read the information coming from its sensors,

indicating that it has reached the edge of the bridge, or a robot that ‘only’

has 2 decimal places, but quickly reads the information from its sensors

and correctly executes a stop command? The answer is clear.

You could opt to provide the robot with a processor that is both fast and

accurate, but then its price and power consumption would certainly be

much higher.

The mobile device market is not the only one that has a high demand for

such processors. Processors are used in all kinds of electrical appliances,

ranging from toys to kitchen machines to machines for heavy industry. A

modern, average size car has about 15 processors, while more luxurious

models may have as many as 65.

The number of processors used in this market are greater by a factor of 40

than that used in personal computers. In 2008, about 100 million PC

processors were sold versus 4 billion so-called embedded processors.

What is Programming?

To make a robot do what you want, you have to give it instructions. We

call these instructions a program. It would be nice if we could just say,

“Go get that dangerous container and push it out of the swamp,” but the

software used in robots is not that clever, yet. You need to give the robot

more detailed instructions such as “Follow the black line to the yellow

swamp. Then, search for the container and when you find it push it

ashore.”

Although these instructions are far more detailed, the robot cannot

understand these either. You will have to tell it what to do in even greater

detail. A robot needs to know when to switch on its motors, how fast to

move, in what direction to go and how to use its sensors to see where it is.

You must also tell it how to distinguish black, green and yellow. The robot

does not ‘know’ this and you will need to instruct it on each of these

things. Telling a robot what to do is called ‘programming’ and we use a

special language called a programming language.

There are many different programming languages, ranging from very

simple to professional ones. This version of the RLT Robotics module uses a

programming language that is based on little pictures called Icons. The

more advanced version of this module is based on a more complicated

programming language called Java and the Eclipse development

environment. In fact, Eclipse is used by many professional programmers.

In this version, we will use the RoboPAL (Play And Learn) development

environment, which is based on a graphical programming language. A

development environment is a system that lets you create programs, test

them and then upload them onto a robot.

RLT2-v4.3 Robotics 20

In RoboPAL, we have the following three components:

 The development environment - to create or modify a program

 A simulator - to check if a program works as intended (testing)

 A compiler/loader - to upload programs onto the robot

Lego MindStorms NXT Robot Components

In this module, we will use a robot with the following components (fig 18).

Fig 18: Components of the Lego MindStorms NXT

USB connection

LCD display

Pushbuttons

On/Off switch

Reset switch

Distance sensor

Reflection sensors

On/Off Switch

The NXT has various pushbuttons. The ON/OFF switch (the orange button)

is used to turn the robot. Press the orange button together with the gray

button underneath it to turn the robot off. Make sure you always switch off

the robot when it is not in use, as the batteries run down quickly.

The Battery

The NXT has a battery compartment on the back that holds six penlight

batteries (or a rechargeable battery that is sold separately). The Lego

Dacta school version comes with the rechargeable battery. This battery has

a connector at the bottom to connect it to the charger. Just above this

connector are two leds: a green and a red one. The red led is on when the

battery is being charged, while the green led is on when the battery is

fully charged. During charging, both leds usually are lit. The batteries run

down rather quickly and take a while to fully recharge. If they are not

charged, you can also use standard alkaline batteries, but in most cases

you will have to disassemble your robot to reach the battery compartment.

Batteries last approximately 30 minutes. So, to conserve your batteries,

remember to switch the robot off when it is not in use.

Fig 19: On/Off
Switch

Fig 20: Charger
Connector

RLT2-v4.3 Robotics 21

The Processor

The brain of the Lego NXT robot is the NXT brick which houses the

processor. This brick contains a powerful 32 bit ARM7 processor with a 256

KB flash memory. This processor controls all the electronics and runs the

RoboPAL programs. In order to work with RoboPAL, the standard Lego

Firmware needs to be replaced with the RoboPAL firmware. This is done

directly with the RoboPAL program. The Lego Firmware can be reloaded

using the Lego NXT-G software, so both languages can be used with the

same robot, but not at the same time.

Sensor Connectors

The sensor connectors are located at the bottom of the NXT brick. Both

light sensors are connected to the left and right sides (ports 1 & 4), while

the two middle ports are used for the ultrasonic distance sensor (port 3)

and a touch or third light sensor (port 2). You may also connect another

sensor to port 2,like the Lego Sound Sensor.

The Motors

The actuators on the NXT are two motors that can be used as a regular

motor or as a servomotor. In this module, we will only use the standard

motor option. An explanation of the purpose of a servomotor is provided

later on in the module..

LCD display

The LCD display is a small screen (110x64 pixels) that is used to display

information by the program. It is especially useful not only for the program

calibration process, but also to know what your robot is doing whilst

testing a program. This is an example of an output device. As the NXT does

not have any lamps, four simulated lamps are shown on the display. You

can turn these simulated lamps on and off with your program.

Pushbuttons

The NXT has various pushbuttons. The two triangular buttons are used to

start the program or to provide information to the program. This is an

example of a passive sensor.

Distance Sensor

This is an example of an active sensor. The sensor has two parts: an

ultrasonic transmitter and a receiver. A short burst of ultrasonic sound (40

KHz) that humans cannot hear is transmitted. This burst is called a Ping.

This ping is reflected by an object and then detected by the receiver as an

echo. The receiver measures how long the ping took to echo back to

calculate a given distance. This sensor can measures objects at a distance

of 5 to over 100 cm.

Fig 23: Servomotor

Fig 22: Sensor
Connectors

Fig 21: The NXT
Processor Brick

Fig 24: LCD display

Fig 25: Passive
Sensors

Fig 26: Distance
Sensor

RLT2-v4.3 Robotics 22

Light Sensors

The light sensors are another example of an active sensor. The light

sensors are mounted underneath the robot and use red light that is

reflected by the ground. The sensor measures the intensity of the

reflected light, allowing the robot to detect different shades of gray

(values) on the ground. Colors are seen as shades of gray. Light sensors can

also be used as passive sensors by switching off the leds. In this case, they

only register the amount of ambient light. We will not use this feature in

our lessons, but it is used by soccer robots to detect the ball.

Reset Button

The orange button is used to stop the program, but if the program has

crashed (it is blocked), you need to use the reset button. In order to reset

you robot, press the orange button and the gray button underneath it at

the same time.

USB Connector

The NXT uses two communication facilities. The USB connector on top of

the NXT brick is only used to upload firmware onto the robot. We will use

RoboPAL to load the firmware, but you must also install Lego Phantom

drivers on your computer. If you are not going to change the firmware

(true for most school computers) this driver does not need to be installed.

The RoboPAL Dongle

To load a program onto the NXT you need to use RoboPAL with the special

Bluetooth dongle, which takes care of all communication between a PC

and the NXT, without requiring any extra software or drivers. The dongle

also acts as a license key for the RoboPAL software. There are two versions

of this dongle, a white one for personal use and a black one, which is the

server version which is used by most schools.

RoboPAL can also be used without a license. You can also install it on your

computer at home. You only need the license to load a program onto a NXT

unit.

Why Use a Simulation Program?

It is dangerous to start training pilots in a real airplane! That’s why they

use a training device that simulates all the movements of an airplane, but

without ever leaving the ground. An image is projected onto airplane

windows for pilots in training. In this way, if the pilot makes a mistake,

there won’t be an accident. Moreover, many dangerous situations can be

simulated and the pilot can gain important experience in a safe

environment. These flight simulators are controlled by computers.

The same holds true for developing robot software. Often, it is not

practical and sometimes even dangerous to test a program directly on the

robot. We first want to try it on a simulated robot. A simulator, however,

has both advantages and disadvantages.

Fig 27: Reflection
Sensors

Fig 28: Reset Button

Fig 29: USB
Connector

Fig 30: RoboPAL
Dongle

RLT2-v4.3 Robotics 23

The Advantages

 You can develop and test a program without a robot, which saves

money.

 It’s faster: loading a program onto a robot takes about 2 minutes

versus less than a second on the simulator.

 Everything in a simulator is stable and always works in the same way.

You do not have to take external elements such as noise, lighting

conditions, uncharged batteries, etc. into consideration.

The Disadvantages

 Not everything that happens with the real robot can be simulated: for

instance, fluctuations in battery voltage or changing lighting

conditions.

 A simulation program has a limited reality. Your program will almost

always have to be modified to run on the real robot. So, be aware that

if your program works fine with the simulator, this does not mean it

will also work perfectly on the real robot.

The simulator allows you to create and test

programs without a robot. This is much quicker

because you do not have to load the program onto

the robot every time you complete a new version. In

a classroom, this is also saves money as not

everyone needs their own robot. Moreover, you can

also develop your program at home. Last but not

least, robots are also expensive and intensive use

will wear them out or damage them.

If your program works on the simulator, load it onto

the robot to see what it does in reality. In chapter 4, we will explain how

to upload the program to the robot.

Programming

FlowCode 1 shows an example of RoboPAL code, while FlowCode 2 provides

an example of the associated pseudo code. Pseudo means ‘not real’ or

‘fake’. It describes the program in an easier to understand ‘natural’

language. To keep code readable, a commonly accepted lay-out is used. In

principle, the code could be written as one long sentence, but this does

not improve the readability, although the computer does not care about

such things.

In the RoboPAL version, we will not use pseudo code very much. (We will

see some examples for the more complicated tasks in part 3.) The RoboPAL

graphical programming language makes code easy to understand itself.

Fig 31: Simulator

RLT2-v4.3 Robotics 24

FlowCode 1

The pseudo code looks like this:

Do four times {

 Set motors to half speed forward // left speed 60, right speed 60

 Wait for 2 seconds

 Make a turn to the right

 During half a second

 }

FlowCode 2: pseudo code.

Pseudo code is written first to get an idea of what a program should do. It

makes it easier to write the real code. In our examples, we also use pseudo

code to explain what the RoboPAL flow code does.

The robot’s control system consists of a RoboPAL program. Every program

consists of a number of RoboPAL worksheets that we call routines. Every

block you see in the program is called an ‘icon’ and a series of these icons

form a routine.

The total of all routines is called the program. Every program has a name

and is stored in a workspace, which in our case is called ‘My NLT

Projects’.

You can also store your programs on a USB stick and then decide what you

want to name your workspace. We have separate definitions in the form of

icons that we specify in the so-called world for each different playing field

(Grid, Rescue and Soccer/Football), but also for each type of robot.

In each chapter, you will find these programs in the form of icons (see the

example in FlowCode 3). In the lessons, we will explain what the meaning

is for each icon.

FlowCode 3

RLT2-v4.3 Robotics 25

FlowCode 3 consists of a number of icons that we will discuss in greater

detail in the following lessons. It does not matter right now if you do not

understand it.

1.6 The First Assignment

It is a good idea to have a look at the Dutch RoboCup Junior website

►www.robocupjunior.nl to get a better understanding of the challenge

that you will meet in these lessons. The site also has a limited English

section.

1.1 Rescue Assignment Rules

 Open Downloads via ►www.robocupjunior.nl

 Open Rules

 Open rules Rescue 200X

 Study these rules

1.2 Find Other Programming Languages (search engine)

 Find out if there are other programming languages. Why are there so

many of them?

 Mention at least three and what they are used for

 What are currently the most used programming languages? Why are

they so popular?

1.7 Test

1. What sensors do you know about and what is their function? Explain to

what human senses they correspond.

2. Explain what the following robot components are used for: push

buttons (three of them), batteries, processor, motors, connectors,

distance sensor, reflection sensors and USB connection.

3. What is the purpose of the LCD screen on the NXT brick?

4. Why are we using a simulation program ?

5. Which programming language will we use to control our robot?

RLT2-v4.3 Robotics 26

2. Getting to Know the Simulator

We will introduce you to reading and changing a program by showing you a

small example program that will also serve as an introduction on how to

use the simulator.

The ‘Flee Behavior’ program has already been written. You need to read

and try to understand where, in the instructions, the actual ‘flee behavior’

takes place. You do not need to fully understand all parts of the program.

Having a general idea is sufficient to find out where you need to make a

change, so that the robot will become curious, rather than scared.

Change the program into ‘Curious Behavior’. This will give you an idea of

how the program controls the robot’s behavior.

2.1 You will learn

 to interpret a RoboPAL program

 to understand FleeBehavior and CuriousBehavior, both as behavior and

as a program

 how to work and test programs on the simulator

 how to recognize errors in a RoboPAL program

2.2 You will need

 a computer with RoboPAL

 the Grid field (a white surface)

 two programs: FleeBehavior and CuriousBehavior (You actually get

FleeBehavior twice and need to change one of them into

CuriousBehavior.)

2.3 You will experiment with

 some simulator features

 changing an existing program and testing it

 the behavior of the robot on the simulator

2.4 After following this chapter, you will be able to

 explain how the simulator works and why it is useful

 work with the development environment and the simulator

 use loops and draw lines between program icons

 make small changes to an existing program

RLT2-v4.3 Robotics 27

Type # Assignment Description

 2A Simulator Working with the Simulator

 2A.1 Simulator Starting the Simulator

 2A.2 View Looking at parts of the Simulator

 2A.3 Insert Adding parts

 2A.4 Making a copy Making a backup copy

 2A.5 Drawing lines Using pipes

 2B FleeBehavior Testing Flee Behavior

 2B.1 FleeBehavior Making the robot flee

 2B.2 FleeBehavior Looking at FleeBehavior in RoboPAL

 2C CuriousBehavior Making CuriousBehavior

 2C.1 CuriousBehavior Making the robot curious

 2D CuriousBehavior Reading Sensor values

 2D.1 Experiment Experimenting with sensor values

 2D.2 Experiment Experimenting with turns

 2E CuriousBehavior Making the robot stop in front of the ball

 2E.1 Personal assignment Stopping the Robot in front of the ball

 2F CuriousBehavior Error messages

 2F.1 CuriousBehavior Errors in your program

 2F.2 CuriousBehavior Debugging a program

2.5 The Assignments

Detail Assignments

In each chapter, you will find both main and detail assignments. The detail

assignments are meant to help you along only if the main assignments are

too difficult or if you do not understand how something works. These

assignments lead you step-by-step through everything you need to

complete the assignment. If you think that you understand the main

assignment, go directly to the next main assignment in each chapter.

Only work on the detail assignments if you think you need them.

Sometimes, you may find clues in the detail assignments that will help you

without having to actually complete them.

Detailed assignments are shown in light gray and indicate that the

assignment is optional, as the next assignment.

RLT2-v4.3 Robotics 28

2A.1 Assignment: Working with the Simulator

The first thing we will show you is how to start RoboPAL, select a program

and start the Simulator. Then, we will explain what you can do with the

simulator. Follow the steps given below. If you think you can already do

this, you may skip this assignment.

2A.1 Starting the Simulator

1

Start RoboPAL by double clicking on the RoboPAL

icon on your desktop.

2

Select the leftmost tab “Perspective” from the window

that appears. Now, select the Physical Level (Level 2)

in which you will find the NLT modules.

3

Now, select the NLT 1 module. All examples,

mentioned in this module are provided as external

modules and can be found on the CD that comes with

the course. In most cases the school will place these

lessons on the server, so ask your teacher where you

can find these lessons in your case.

Now load module 2A from the student examples.

4

In the window that will appear, there is a Toolbox on

the left (more about this later) and RobotWorldSheet

in the middle at the top. This is called the World. It

displays the playing field, robots and any other object

in use (a ball, for example).

Underneath this is the FlowCodeSheet with your

program. This is where you will be working. The

project structure is displayed on the right in the form of

an expandable list (tree) and, at the bottom, there is

the properties box. We will explain all of these parts

further on.

5

We will begin by starting the simulator. Click on the

green ‘Run’ button in the left upper toolbar. Take note

of these icons as you will be seeing them regularly.

Always first make the top window active by clicking in

it anywhere, otherwise you cannot start the Simulator.

2A.2 Assignment: Looking at Parts of the Simulator

We are going to find out how to use a simulator and what it can be used

for.

Using Views

The various views available on the simulator allow you to choose how you

observe the playing field.

RLT2-v4.3 Robotics 29

2A.2 Looking at Parts of the Simulator

1

As soon as the simulator starts, you will see three screens:

the Grid field on top with the robot and a ball, the Program

underneath that the Control Panel on the right. We will first

look at some of the details of the playing field (the world).

2

This is how the robot and ball appear in the simulator. You

can move the robot and the ball by pressing the left mouse

button and dragging the robot with the mouse.

You can make the robot face a different direction by using

the right mouse button.

The blue area around the field is a kind of nowhere land

where the robot should not go. If the robot drives too far into

nowhere land, the simulator will put it back in the middle of

the field.

3

The Control Panel is at the top on the right with a row of

icons. The first five icons determine how you look at the field:

3D is the standard view, 2D allows you to look at the field

from above and Point Of View (POV) shows the field from

the point of view of the robot. Try all of them.

4

The Control Panel also has four dials corresponding to the

four sensors that can be attached to your robot. We will not

use the second sensor (the reflection sensor). When your

robot gets close to a ball or other object, you will see the

value of the Distance sensor change. You will need to use

this later on. The NXT brick in the simulator also displays the

same buttons as the real NXT that we discussed in the

previous lesson.

5

The icon number eight is used to switch the lights on and off

in the simulator. It can be used to slightly alter the lighting

conditions in the simulation. We will not be using it, so make

sure the lights are always on. The icon next to it is used to

change the speed of the simulator itself. Always keep this at

a 100% setting, but you can make the robots move faster or

slower in the simulation. Its effect is similar to making a video

play faster or slower. Your program stays the same, but

everything happens faster or slower.

RLT2-v4.3 Robotics 30

6

To end this explanation, we return to the icons in the upper

left side of the toolbar. We started the simulator using the

green arrow. We also need to be able to go back to the

program and we use the small blue square to do this.

The next blue square with the arrow in it makes the simulator

start the program again from the beginning. This is practical

because you do not have to go back to the program every

time and restart the simulator. So, if you want to run a

program more than once, you can use the button with the

blue square and the arrow. When you are done with the

simulator, click on the blue square without the arrow.

2A.3 Assignment: Adding Parts

In the RobotWorldSheet, also called the World View, you can create new

robots and objects and insert them onto the playing field. We have a Ball,

Cup, Wall and a Can (the container) as objects and a number of robots.

You will mostly be working with the Basic or Rescue Robot, but other

robots may be added as well.

2A.3 Adding Parts

1

Load Program 2A FleeBehavior, if you have not

already opened it. Select the RobotWorldSheet by

clicking somewhere on that panel. Please note that the

ToolBox (on the left) only shows the parts that belong

to the World View.

Open “Basics and Rescue” and “RobotsNXT”. Now,

you will see various elements that you can insert onto

the playing field, as well as the two versions of the

NXT robot that you can use. We will always use the

Rescue Robot, because it has a distance sensor. The

other robot does not have this sensor.

2

Select a Cup or a Can from “Basics and Rescue” and

insert it onto the field. You can put all kinds of objects

onto the playing field in this way. Almost all programs

in the RLT lessons are created as a QuickStart

project, in which all the necessary parts have already

been selected for you, but you can change them at

any moment.

Also look at the other parts, like the Soccer (Football)

World and the Rescue Arena.

3

You can move any element with the four-arrow cursor,

both in the World and in the FlowCode View.

RLT2-v4.3 Robotics 31

4

If you place objects on the playing field, they will

always appear on top of any other object that is

already there. So, if you place a tile on top of a robot,

the robot will disappear underneath the tile. Use the

right mouse button and choose the ‘Bring to Front’ or

‘Send to Back’ option from the pop-up menu to move

an object to the foreground or the background.

5

Click with your mouse on the bottom panel, the

FlowCodeSheet. You will see that the ToolBox now

changes and shows all the parts that are needed to

make a program. Look at the contents of

Program Flow, Driver Controls and Sensor Flow.

You will find the icons that have been used so far.

Later on, you will be using other icons as well. So take

note of which of the two WorkSheets you are working

on, as each has a different ToolBox.

6

Another important point is that when you are working

in the FlowCode Sheet, the green Run button on top is

not active, so you cannot start the simulator from

there. You first have to activate the ToolBar of the

RobotWorldSheet by clicking on the upper panel.

This will activate the Run button and display a series

of different icons in the ToolBar. In the WorldView, you

can rotate objects with the rotation icons (Program

View does not have these icons).

7

A little more about these icons. In the Program View

(FlowCodeSheet), the last icon is a little brush that you

use when your program becomes a little too messy.

The Brush icon removes all the icons that are

unconnected.

The Hand icon is used to move the entire panel, while

the magnifying glasses are used to change the size of

the icons in the panel. There are some other icons, but

we will discuss these later on.

8

You now have enough information to start

experimenting with the Simulator. Experiment with

how all its parts work, but make sure that you do not

change an existing program by accident. Also, make

sure that you always keep a version of a working

program, so that you can go back to it in case

something goes wrong. We will explain how to do this

in the next assignment.

RLT2-v4.3 Robotics 32

Making a Backup Copy

2A.4 assignment: Making and Using a Safety Copy

It is a good idea to make a copy of your program before you work on it. So,

from here on, we will first make a copy of every program that we are going

to modify.

2A.4 Making a Backup Copy

1

We are going to make a copy of NLT 2A – Flee

Behavior. Load this program and select ‘Save As’

from the menu. You can save your program in your

own workspace or on a USB stick. Do not save

your program in the student example directory or

you will overwrite the original and you may want to

go back to that in case of problems.

2

Use the Browse button on the right of the window

to find the directory (folder) where your programs

are stored. If you are using a USB stick, select it;

otherwise, select the folder where the NLT projects

are normally stored.

3

Change the name of the project. For instance: 2A.4

– Drive behavior. You will be making several new

versions so that you can easily go back to a

working version if something goes wrong.

4

If you have saved a program, you may load it again

later on. The programs that are built into RoboPAL

are loaded from the startup screen.

To reload a program that has been saved, select

the File menu and then the Existing tab (instead of

New) from the startup screen. Now, select the

directory where you saved your program.

You now have a new version of the program that you can modify.

RLT2-v4.3 Robotics 33

Connecting Icons Using Pipes

2A.5 assignment: Using Pipes

 In order to connect icons, you normally just place them side by side,

but sometimes it is necessary to make longer connections. We use the

Wiring Wizard to do this. The Wizard connects all open connections,

but sometimes it does not know which icons to connect and you will

have to connect them manually.

 We use the Pipe cursor to manually draw a line between any two icons.

 When icons are connected, the connecting line will move with them

when you change their position. Drawing a line with the Pipe cursor is

more difficult than using the Wizard, so we will try this out first.

2A.5 Using Pipes

1

Load program 2A.4 – FleeBehavior from the

previous assignment. The program contains icons

that are connected by lines called Pipes. We will

experiment a bit with this program, but first save it

as 2A.5 – FleeBehavior.

2

Tthe two Wiring Wizard icons are on the top right

side of the menu bar. The first is the Wizard, which

makes connections, while the second one removes

all connections. Click on the second icon to remove

all pipes from the program.

3

Wiring is automatically inserted from left to right

and from top to bottom. The Wizard finds

unconnected icons that are open on the same level

and connects them. So, click on the first icon and

watch how the Wizard restores the connections.

4

If the icons are not on the same level, the Wizard

does not work well. You can solve this by moving

the icons so that the Wizard understands what

belongs together. (Use the cursor with the four

arrows to move icons.)

Sometimes, however, the wiring is too complicated

for the Wizard and you will have to connect the

icons manually. We will now see how to do this.

First, remove the pipes again and put the icons in

the correct position.

5

You are now going to use the Pipe Cursor, which is

in the top menu bar, next to the other cursor icons.

RLT2-v4.3 Robotics 34

6

Select the Pipe Cursor and move with the mouse to

the second icon on the left side. Click with the

center of the cross on the connection point at the

bottom of the icon. Release the mouse button and

move the mouse downward. Then, click the left

mouse button again. This allows the line to make a

turn to the right.

7

Drag the line to under the blue icon. Click the left

mouse button again to bend the line and move the

cursor up to the connection point of the blue Loop

icon. Now, click the left mouse button again. The

line is now on the Loop icon, but it is still connected

to your cursor.

8

Click the right mouse button to indicate that you

have finished and release the line from the cursor.

The line will remain connected to your mouse until

you press the right mouse button. After you have

pressed the right mouse button, the line will change

into a pipe, but only if it has been connected

correctly.

9

If the connection is not correct, a pipe will not

appear, indicating that something went wrong. If

you move the icons, the pipe will move with them.

Use the cursor with the four arrows to move icons.

Note that pipes can only be drawn horizontally or

vertically.

10

If connections made with the pipe cursor do not

work as you expected, you may end up with a

mess of unconnected lines in your program. If two

lines are drawn on top of each other, they erase

each other and it looks as if they are not there.

11

Use the icon with the brush on it to clean up all

these unused lines. You can also use the ‘delete all

links’ option from the Wizard. If the program works

fine again, save it.

RLT2-v4.3 Robotics 35

The Main Assignment

You will now make a small change to an existing program and modify the

robot’s behavior, changing its FleeBehavior into CuriousBehavior.

Open FleeBehavior and run it in the simulator. If you have difficulty

starting and using the simulator, look at the examples on how to use the

demo programs. The detail assignments - indicated by the magnifying glass

icon as in assignment 2A - can also help you with this. You may skip the

detail assignments if you think you can work directly on the main

assignment, but if you have problems go back to the detail assignments.

Now, look at the program CuriousBehavior. It is exactly the same as

FleeBehavior and is ready to be modified. Your job is to modify the

program so that the robot moves toward a ball or can in the simulator.

Once this works, you have to make sure that the robot does not bump into

the object and stops about 10 cm before it.

Important: You can change the direction in which the robot is facing in the

simulator by pressing the right mouse button and dragging the mouse with

the right button pressed.

2B.1 Assignment: Your first programming assignment - FleeBehavior

You are going to watch the robot display flee behavior. If this first step is

too hard, first try out assignment 2A from the detail assignments.

2B.1 Making the Robot Flee

1

Start RoboPAL by clicking on the startup icon on

your desktop.

2

Select the first lesson 2A – FleeBehavior from the

NLT student examples. Your teacher will have

provided you with a directory where these

examples are stored.

3

Press the green start icon to start the simulator.

Use the mouse to place the robot on the left side of

the field. Then, move the ball closer and further

away and watch the value of the distance sensor

change in the top right of the Control Panel.

Find out from how far the robot can see the ball.

RLT2-v4.3 Robotics 36

4

Put the robot right in front of the ball, as shown in

the picture in step 3.

Start the program by pressing the triangular button

on the right under RUN. This will start the

FleeBehavior program.

5

Watch the blue arrow (the HighLight) in the

simulator carefully. It shows the part of the program

that is currently being executed.

If you manually move the robot you will not only

see the sensor value change, but also that another

part of the program is activated.

Watch carefully when the robot stops moving

backward and try to understand what condition

makes the robot stop.

2B.2 Assignment: Watching the Program

Stop the program and go back to the programming environment using the

small blue square button next to the green start button. Let’s have a

closer look at the FleeBehavior program. In the pseudo code 4 below, you

can see what the program code does.

Start of FleeBehavior // FleeBehavior

Repeat always: // True means always

 { if distance sensor value is larger than 85% then do

 { motor left and right -50 // half power backward

 turn on green LED // green = see bal

 }

 Else

 { motor left and right 0

 Turn green LED off

 }

 }

FlowCode 4: Pseudo Code FleeBehavior

2B.2 Looking at Fleebehavior in RoboPAL

1

Close the simulator by pressing the blue square

button. Look at the program in the FlowCodeSheet.

2

FlowCode 4 shows the pseudo code in which the

processor is told what to do. See if you can find

each step from the pseudo code in this program.

RLT2-v4.3 Robotics 37

3

You can make a number of changes to this

program, but do not do this yet. First, let’s take a

look at what we can change.

Select the icon that reads the sensor value (the

gray icon with the two arrows on it, a

BranchIfHigherThan icon). If you click on it, the

properties shown on the right appear and you can

see that the Distance sensor is in use. Underneath

that you can see the Level and Margin that are

important values for the Distance sensor. This

percentage corresponds to the value that you see

in the simulator when the ball is moved, while the

Level field allows you to specify at what distance

the robot must react to the ball or another object.

4

Select the icon to drive backward. Here, you will

see that you can change its speed. It is set at half

speed backward. You can also change the

Steering, which is the size of the turn that the robot

makes or, in other words, the difference in speed

between the left and right wheels.

2C.1 Assignment: Curious Behavior

We will now change the robot’s behavior so that it becomes curious and

moves toward the ball. The program that you will find in CuriousBehavior,

is not ready to be curious. In fact, CuriousBehavior is identical to

FleeBehavior. Look carefully at the explanation provided by pseudo code

4.

2C.1 Making the Robot Curious

1

Close the program by selecting Close Solution from the File

menu. Select File New and then program 2C – Curious

Behavior from the NLT student examples folder. This

program is almost the same as FleeBehavior, but the LEDS

are missing.

2

Change this program so that the robot moves forward

instead of backward. It will now push the ball away. After you

have made your changes, save the program as 2C.1 –

Curious Behavior to make sure you do not lose anything if

your program crashes, but first check to make sure that your

program works.

3

As the robot pushes against the ball, it will roll away and the

robot will continue to follow it. Experiment a little bit with the

distance at which the robot reacts and with the speed, too.

RLT2-v4.3 Robotics 38

2D.1 Assignment: Effects of the Sensor Values

Now that you know enough about the simulator, you can start to
experiment with the sensors. Watch how the sensors react to movement in
the simulator.

2D.1 Experimenting with Sensor Values

1

You have changed CuriousBehavior to make the robot

move toward the ball. Save the program again as 2D.1

– Curious Behavior to prepare for the next experiment.

2

You are going to experiment with the sensor values

and see what happens. Select the gray

‘BranchIfHigherThan’ sensor and look at its Properties.

Change the value of Level and make it higher. Test

the program in the simulator and see what happens.

What has changed?

3

Move the ball toward the robot or away from it. Watch

the dial of the Distance Sensor and see how the value

changes. You will see what value belongs to which

distance.

4 Now, lower the value and see what happens.

5

Carefully watch the value of the Distance sensor in the

Control Panel during your experiments. You will see

that the value of the sensor varies at different

distances from the ball.

Make sure you position the ball in a straight line and

look at how far the sensor can see the ball on different

positions on the field.

6

Try to determine what the sensor values are at

different distances, as in the picture on the left. This

will give you an idea of how a sensor works, what its

field-of-view is, and at what distance the sensor

detects the ball.

This works not only with the ball, but also with the cup

or can.

Find out the exact value straight ahead of the robot at

a distance of about 10 and 40 cm. You can estimate

this based on the dimensions of the robot, which is

approximately 15 cm in diameter.

RLT2-v4.3 Robotics 39

2D.2 Assignment: Experimenting with Turns

So far, the robot has moved in a straight line, either toward a ball or away

from it, but the robot can also make turns. In this case, different things

may happen. Experiment with this.

2D.2 Experimenting with Turns

1

So far, the robot has moved in a straight line:

backward with FleeBehavior and forward with

CuriousBehavior. However, the robot can also make

turns. Save your program as 2D.2 – Curious

Behavior. Do not forget to put the sensor level back

to 85%.

2

Replace the Drive Forward icon with one to drive in a

Curve, either forward or backward. Start with a

backward curve by using the DriveReverseRight icon

from Driver Controls.

3

Put the ball and robot forward to give you space to

drive backward. When you run this program, you will

see that the robot drives backward, avoiding the ball.

If you then make the robot drive forward, it will have

successfully avoided the ball. We will take a better

look at this behavior in later lessons.

4

Place a number of balls on the field, as shown on the

left. You can find the balls in the Soccer World. Run

the program and see what happens.

Do Not Bump into the Ball

Everything that you have learned so far will now be used to make a final

change to the program. If you think this is too hard, then study the detail

assignments 2D.1 and 2D.2 first.

You have to keep the robot from bumping into the ball. Start by finding out

at what value of the distance sensor the robot must stop. Once you have

found this value, make the robot drive toward the ball and stop just in

front of it.

You will need something new to create this program: a command to make

the sensor look at two different values. First, the robot must check if it

sees the ball (sensor > 85, so it will start moving, but it must also

check if it is close enough to the ball and then stop . So you will need two

conditions to decide if the robot needs to move. To do this you define a

RLT2-v4.3 Robotics 40

range in which you specify a lower and an upper margin. Within that range

the robot needs to move, outside the range it must stop.

2E.1 Assignment: Making the Robot Stop

Change CuriousBehavior so that the robot no longer bumps into the ball,

but stops right in front of it. You will first need to find out what the value

of the distance sensor is at a distance of about 10 cm.

2E.1 Making the Robot Stop in Front of the Ball

1

First save your program as 2E.1 – Curious

Behavior. Try to change it so the robot does not

touch the ball, but stops in front of it. The ball will

no longer roll away. It is not that easy. In the

current program, the robot is instructed to start

moving when the sensor value is higher than 85%.

Find out what the value of sensor is at a distance of

about 10 cm.

2

We need to tell the robot that it should move

forward only if the value is higher than 85%, but

that it must stop if the value is larger than the one

you just measured. The closer you get to the ball,

the higher the value becomes, so the range must

be between 85 and the other, higher value, which

represents a distance of 10 cm.

3

Select the Sensor Flow from the ToolBox and

select the BranchOnRange icon. Remember? It is

attached to your mouse. If you move the mouse to

the FlowCodeSheet at the bottom, you will see that

it moves with your mouse cursor.

4

Remove the BranchIfHigherThan icon with the

delete button and insert the BranchOnRange icon

in its place. Make sure that the pipe at the bottom

is connected to it. You can do this by clicking on

the pipe when the icon is in the right position. Move

icons with the four-arrow cursor.

RLT2-v4.3 Robotics 41

5

Now, you have to change the properties of the

BranchOnRange icon. First, you need to change

the Sensor. Select the Distance sensor and change

the Lower and the Upper Threshold values. The

Threshold tells the robot within which boundaries to

react to a given value. There also is an additional

parameter, the Margin, which is set to Default. (We

will explain more about this in the next chapter.)

Set this value to zero for both Margins or it will not

work. We will explain why you have to do this later.

Remember that the values of a sensor are always

a Level and are expressed as a percentage. This

will also be explained later on.

6

Once you have done this, save your program.

Then, start the simulator and check if your program

works. Change it until it does what you intended it

to do. Experiment a little bit with the speed and

maybe also with different distances. If it works fine,

then try to test it on the robot.

While you are changing and testing your program all kinds of things can go

wrong. If you want to know what kind of things can happen and what you

need to do to solve these problems, look at detail assignment 2F.

Error Messages

When a computer runs a program, the program must not contain any

errors. If there are errors, three different situations can occur:

 The program does not know how to handle the situation and will not

work. You will get an error message telling you what went wrong.

 The error is so severe that RoboPAL cannot handle it and crashes

without producing an error message.

 The program does not stop, but does something completely different

from what you expected. This kind of error is not detected by the

computer, because it only does what it is told and not what is

“expected”.

In the first situation, there is something wrong in your program. There may

be many causes for this. In the next assignment, we will look at some of

them.

2F.1 Assignment: Error Messages

You are going to look at what can go wrong with your program. As

unexpected things can always happen, we always advise you to frequently

save your program. If something goes wrong and your program crashes, you

can always go back to the last working version you saved.

RLT2-v4.3 Robotics 42

2F.1 Errors in your Program

1

The Driver icon is missing from the Flowcode on the

left. If you try to run this program, the simulator will just

stop at that place in the program, because it does not

know what to do next.

2

If you remove the robot from the RobotWorldSheet or

forget to insert one, the simulator gets confused and

will show the playing field, but the Control Panel

disappears and you cannot start the robot program.

3

If you accidently remove the program you made from

the FlowCodeSheet, RoboPAL will not start and you

will get an error message. There are a number of

these messages that help you to identify what went

wrong.

4

The situation becomes more serious when there is no

playing field in the WorldView. This will not happen so

easily in our lessons, because QuickStart always

inserts a playing field, but you could accidently remove

it. With the Grid field this is harder, as it consists of a

number of tiles, but in the later lessons, where you

only use the Rescue field, it can happen.

5

When you use a program that contains errors,

RoboPAL may crash and produce an error message.

To find out what went wrong, you can click on Details.

6

This kind of error is a so-called “Unhandled Exception

Error”. RoboPAL is in a situation that was not

anticipated and shows you what it was doing when the

problem occurred. You will see a list of the steps that

the program was trying to perform and that may help

you determine what caused the error. In this case, you

see a NullreferenceException (1st line) in

RobotSimWorld (3rd line). This means that RoboPAL

was trying to start the RobotWorld but could not find it.

7 It is even more serious when RoboPAL crashes without producing any error message.

Sometimes, you will get an error message from Windows, telling you that the program

crashed. In this case, you do not know what caused crash and you will have to restart

RoboPAL. This is why it is important to always save your program before you start testing, so

you can always go back to the last saved version. You can then look at the last changes you

made, which probably caused the problem.

RLT2-v4.3 Robotics 43

Debugging

When your program is ready to be tested on the simulator, you will often

discover that it does not do exactly what you had in mind. You will then

have to find out where the program goes wrong. RoboPAL checks many

parts of your program to see if everything it needs has been specified, but

the computer cannot determine what you intended your program to do. So,

if a program does not do what you expected, there must be an error in the

logic of your program. You either forgot to insert something or there may

be something wrong with the logical order of your icons.

This kind of mistake is very hard to find, because most of the time you only

see what you think your program is supposed to do. The true art of

programming is to put yourself in the position of the computer. You have

to look exactly at what is specified in your program, not at what you

meant it to do. You will gradually get better at looking at a program in this

way.

To help you determine where a program goes wrong, there are a number of

tools available that we will describe briefly. The process of finding errors

in a program is called ‘Debugging’. In early computers that used very large

components, like switches and relays, a fly or other insect (also called bugs

in English) would often get trapped between the contacts of a switch and

prevent it from working correctly. The computer then contained a ‘bug’

and the programmers had to find where the bug was and remove it. We

still call an error in a program a ‘bug’ and the process of solving errors is

called ‘debugging’.

2F.2 Assignment: Debugging

You are going to look at a number of debugging tools and use them in the

program CuriousBehavior. Load the program 2F – CuriousBehavior.

If you are working on a computer with a small screen, some parts may not

be visible. You can use the mouse to move the borders of the panels and

make them bigger or smaller.

2F.1 Debugging Your Program

1

The simplest way to check what your program is doing

is to turn a led on or off in your program, or use a

beep. You will do this frequently and it is a quick and

easy method, but sometimes it is not enough. You

may need more detailed information about what is

going on.

RLT2-v4.3 Robotics 44

2

RoboPAL contains a Debugger that allows you to

check all kinds of things while your program is running.

A number of icons is available and we will now look at

them in greater detail.

3

Comment. You can use the Comment property and

insert a description for every icon. When you activate

the first icon with the arrow in it, a comment will

appear in a pop-up window as soon as you select the

icon. Turn on the first icon and click on each of the

icons in the program and look at the comment. You

can drag the pop-up window with the mouse to a

position where it does not cover a part of the program

you want to see.

4

Breakpoints. By clicking on an icon and selecting the

red ball, you insert a Breakpoint on this icon in your

program. When you then start the program, it will run

until it reaches the breakpoint and then stop and show

you what is happening. The last icon serves to remove

all breakpoints from the current part of the program

you are working on. You can also remove a single

breakpoint by selecting the breakpoint icon and then

clicking on the ball again.

5

Stepping. As soon as a program stops at a

breakpoint, these two icons become active. Now, you

can follow the program step-by-step, so that you can

see exactly what is happening. When you push the

Run button (the triangular arrow), the program

continues normally until it reaches the next breakpoint.

The pointed arrow is the Step button.

6

Pause Mode. If you do not use breakpoints in your

program, you can use the first icon to pause your

program. The blue arrow shows at what point the the

program is halted and you can progress from that

point step-by-step and use the Run button to resume

your program.

7

Inspectors. As soon as your program has stopped,

either via a pause or a breakpoint, a pop-up screen

appears displaying the content of the variables in your

program. In the example, a counter is increased and

as you step through your program you can look at the

contents of the counter.

In this program, we are using a few icons that you

have not seen before, so do not worry if you do not

understand them, we will explain them in later lessons.

RLT2-v4.3 Robotics 45

Comments

Putting comments in a program is a good habit. They clarify what a

program is supposed to do. This is not only practical for your own

understanding (after a while you may look at your program and not

remember why you did something in a particular way), but it also

especially important for other people, who might look at your program and

need to understand how it works.

In RoboPAL, there are two ways to insert comments in a program:

1. Include comments with every icon in your program. In the previous

assignments, you have already seen examples of this. If you turn on

the Comment icon in the Debugger Toolbar, your program will

automatically show the comments in a pop-up window when you

select the icon. You have to activate the comment button to see

the pop-up comments. During debugging, these comment may also

be viewed by using the icon for displaying a breakpoint comment.

In this case, the comment is displayed when it reaches the icon

during debugging.

2. The second way to include comments in your program is by using a

comment block in the Documentation part of the ToolBox. The

Comment icon allows you to include text in your program to explain

what is happening in the program. We will be using this feature in

later programs, too.

2.6 In Practice

RoboPAL is a development environment with a built-in simulator and

debugger. The programming language is a graphical language based on

icons. In real life, professional programmers use an Interactive

Development Environment (IDE) such as Eclipse, which is used in the Java

version of this module. Other well-known IDEs include MicroSoft Visual

Studio and Oracle jDeveloper. Most major manufacturers have their own

IDE. Most are very similar and all of them have a debugger.

Simulators are usually available for

applications in which the use of real

equipment it too expensive or dangerous,

as we have seen in the case of flight

simulators. Simulators are also entering

the business community. There are

business simulators that help people to

plan and calculate the consequences of

their projects.
Fig 32: Bioloid simulator.

RLT2-v4.3 Robotics 46

Nonetheless, simulators are most frequently used in robotics. The

development of a robot is simplified by using a simulator. Having to load

the program onto the robot and then testing it takes a lot of time. Almost

every modern robot has its own simulation environment that is used by

programmers and developers. You can look at examples such as the

BioLoid, the RoboNova or the Aldebaran NAO robots.

2.7 Test

For some of the questions below, you may need to look at the detail

assignments.

1. Explain what the following parts of RoboPAL are used for:

 FlowCodeSheet, WorldViewSheet, ToolBox, Simulation, Control Panel

2. What is the meaning of this icon in RoboPAL?

3. What is wrong with the program in FlowCode 5?

FlowCode 5

4. What will happen if you run this program?

5. How are errors indicated in RoboPAL?

6. What is the function of a debugger? Of a breakpoint?

RLT2-v4.3 Robotics 47

3. How Does Your Robot Work?

In chapter 2, you worked with the simulator. In this chapter, we will move

on to the real world and show you how to work with the robot itself. To

transfer your program from the simulator to the robot, your program code

has to be translated into a machine language that the processor in the

robot will understand. This process is called compiling or packaging. The

“translated” program is uploaded to the robot memory via the RoboPAL

simulator. We will now look at how the program is executed by the robot.

3.1 You will learn

 how to make a connection with the Lego NXT robot

 how to upload a program and have the robot execute it

3.2 You will need

 a computer with RoboPAL

 a RoboPAL dongle

 charged batteries / adapter

 a table to make your robot move on

 the Grid field (a white surface)

 the CuriousBehavior program

3.3 You will experiment with

 making contact with your robot

 finding the NXT robot in RoboPAL

 uploading a program to the robot from the computer

 trying out the program on the robot.

Type # Assignment Description

 3A RoboPAL Loading the Firmware

 3A.1 Basic Settings Basic settings in RoboPAL

 3B CuriousBehavior Loading the Program

 3B.1 Uploading Uploading the Program

 3B.2 Reading Sensors Reading the Sensors

 3B.3 Testing Making the Robot Move

 3C Test Written test on the first three chapters

RLT2-v4.3 Robotics 48

3.4 After following this chapter, you will be able to

 explain how to write a program, how to test it, how to upload it to the

robot and run it on the robot

 use the RoboPAL dongle.

3.5 The Assignments

In order to use the robot, we must first connect it to a PC. We must also

make sure that we can upload our program to the robot.

3A.1 Assignment: Setting Up RoboPAL

Before you upload your program onto the NXT storage, you have to make

some preparations. You must make sure that the RoboPAL firmware has

been installed on the NXT and that it is set to Level 2.

When this is done, you can start with assignment 3B. Check first, however,

that everything has been installed correctly.

Installing the Firmware

To run the Lego NXT robot with RoboPAL you need to install the RoboPAL

firmware on the robot. In most cases, this will have already been done, so

you can safely skip this step. If, however, it has not already been done, ask

your teacher to load the firmware onto the Lego NXT brick. When you start

up the NXT by pressing the orange button, you will see the following

picture in the NXT display:

If you see this picture something entirely different, the firmware needs to

be loaded. The version number in the display has to be at least 4.1.4.

Basic Settings of RoboPAL

In these lessons, you will work with RoboPAL Level 2, also known as the

Physical Level. First, however, you have to setup RoboPAL to make your

robot work correctly. Then, you need to set the so-called Default values.

Default means standard or, in other words, the values that the program

refers to when you use the sensors. Using default values means that, in

most cases, you will not have to make any additional changes to your

program. The two values that we need to set are the Sensor Range, so that

RoboPAL knows the maximum value of the sensors. The standard is 1023.

As all icons in RoboPAL use percentages, the program needs to know the

maximum value. So, before you continue, make sure that RoboPAL has

been set to the correct level.

To make sure your computer is ready to make contact with the robot,

follow these steps:

Fig 33 RoboPAL

Startup Screen

RLT2-v4.3 Robotics 49

3A.1 Basic Settings of RoboPAL

1

After starting RoboPAL, make sure that the startup

screen is visible, otherwise select File New.

Then, select the Perspective tab and RoboPAL Level 2

for NLT Part 1. Now, press the Apply button.

2

If the firmware for the NXT has not been installed, do it

now. Press the Firmware button to see the screen that

allows you to upload the firmware. You must also specify

the number of your robot, here. Your robot needs to be

connected to the PC via a USB cable to complete these

steps.

The screen is divided into two parts. The first part

concerns the installation of the LeJos operating system. If

it is already installed on your NXT, there is no need to do

this again. Otherwise, look at the detailed instructions for

RoboPAL4NXT that are included in the teacher’s guide,

as extra are steps required for this.

3

The second part is used to upload the RoboPAL

firmware. Make sure that the robot is on and displaying

the LeJos main menu. This step will NOT work if the

standard RoboPAL screen is visible. If that is the case,

ask your teacher to set the NXT to the LeJos menu for

you.

Now, insert your robot’s number and press the button to

upload the firmware.

4

Set the two default values above the Apply button. The

first one is the default sensor range that must be set to

1023, the maximum value a sensor can return.

5

Then, select the default sensor margin and set it to 5.

This is the safety margin that we use when reading a

sensor value (i.e., to check if the sensor sees Black).

The value that you specify here is used to check the

range of values that the sensor uses to recognize a

certain color. If, for instance, you measure a value of 19%

for Black and specify a margin of 5%, everything between

14% and 24% will be considered to be Black.

The margin that you specify here is used automatically in

any program in which an Icon uses a Margin. If you

choose Default, it will automatically use this value. You

can always overwrite the Margin with your own temporary

value. This is then only used when that particular Icon

becomes active.

RLT2-v4.3 Robotics 50

Fig 34: NXT Control
Panel

Uploading the Program

We will now upload a program to the robot. The robot needs to be

switched on and connected to the PC. Please remember these steps, as

you will have to repeat this procedure in all following lessons. You have

already seen the “brain” of the robot in the Control Panel when you used

the Simulator.

We are going to load the CuriousBehavior program onto the NXT robot

memory and then work with the robot.

Once you have loaded the program, you can use the RUN button to start

the program on the NXT just as you did in the simulator. The screen also

displays “TST.” This is used to read the sensor values and will be explained

shortly.

Once it has been loaded, you can restart a program many times by

selecting RUN from the main screen of the NXT. This always starts the

most recently loaded program. If you want to stop the robot, press the

orange button. If this does not work, switch the robot off by pressing the

orange button together with the dark gray button underneath it.

You will notice that the real NXT robot reacts slightly differently from the

simulator. It has more problems with lighting conditions and shadows. So,

there will be a lot of trial and error to make it work correctly.

Checking the Batteries

In assignment 3B, you are going to connect your robot to the computer and

upload a program to the robot. Make sure the robot batteries are fully

charged before you start the lessons.

You can use the Lego NXT with regular alkaline batteries or with the Lego

rechargeable battery pack. Always switch off the robot when it is not in

use and between tests.

3B.1 assignment: Uploading the Program

You are going to load the CuriousBehavior program onto the NXT flash

memory. Insert a RoboPAL dongle into a free USB port on your computer

and make sure the batteries are fully charged. If you are using the Server

version, you need to connect to the server first instead of using a dongle.

3B.1 Uploading the Program

1

Load 3B CuriousBehavior onto the simulator to upload it to the

flash memory of the NXT. Make sure the program is ready in the

simulator and that it works properly.

RLT2-v4.3 Robotics 51

2

Start the Lego NXT robot by pressing the orange button. When

the NXT is ready you will see the word NXT followed by a number

on the display. (You do not see this number in the simulator).

Remember this number. It identifies your robot and you will need

it to load programs.

3

In the simulator, just above the playing field, there are a number

of boxes that you can use to select information. When you click

on the small arrow on the right, you will see a list of all the NXT

robots your computer knows about. If your computer has not

identified any robots yet or if your robot is not listed, you need to

select the last line <refresh list>. Make sure that the special

RoboPAL dongle is inserted in one of the USB ports before

continuing or when using the Server, make sure you know how to

reach the server. When you select <refresh list>, the computer

will check which NXT robots are on: you will see their names in

the list and you can select your robot. So make sure your robot is

switched on.

4

Once your robot has been identified, select it from the list and

then click on the blue triangle in the next box on the right to

upload the program. You will briefly see an orange ‘progress bar’.

When the upload has been completed you will see a message.

The NXT will beep when it has received the program and you can

then start using your NXT just like you did on the simulator.

If the upload does not work, try it once again or ask your teacher

to help you. You can try to switch the NXT off and on again and

try once more. You switch the NXT off by pressing the orange

button together with the dark gray button underneath it.

5

Start your program by pressing the RUN button. You will then see

a menu in which you need to press RUN a second time, just as

you did in the simulator.

Turn the robot off when it is not in use as the batteries run down

quickly and it takes more than half an hour to recharge them.

Remember the upload procedure, because from now on you will

need to do use it every time you want to test a program on the

NXT.

3B.2 Assignment: Reading the Sensors

You will need to write down the sensor values, just like you did whilst

using the simulator. As the sensor values of the NXT robot differ from

those of the simulator, you will need to determine the real values first.

Then, you may have to modify your program in order to use the robot.

Please note that the NXT displays less information than the simulator.

Indeed, automatic calibration is not used with the NXT robot in these

lessons, but is only a part of the program on the simulator.

RLT2-v4.3 Robotics 52

Fig 35 screens to read out the
sensor values

Reading Sensor Values

Once the program has been uploaded you can test it, but

first, as we have seen in previous lessons, you need to

know what the sensor values are. In the simulator, you

could use the dials in the Control Panel, but now you

need to know the real values the robot sees. The NXT has

a small program that displays sensor values.

3B.2 Reading the Sensors

1

Start the Lego NXT robot again so you see the startup menu. Now,

press the TST button, the triangular button on the left.

The screen view that appear here also works in the simulator. It’s a

bit simpler on the NXT robot than on the simulator; moreover, color

indicators like WHT, YEL, GRN and BLK are not available on the

NXT.

2

You will then see the screen on the left. It displays the light sensors,

also known as ground or field sensors. We will explain more about

them in the next chapter. Press the triangular button on the right and

you will see a second screen. This one is almost the same, but

instead of Lamp On, you will now see Lamp Off in the center. This is

used to read the value of the ambient light with the red Leds

switched off. We will not be using this feature in these lessons.

3

Press the right button again until you can see the screen view on the

left. This is where you can measure the value of the Distance and

the Reflection Sensors. We are not using the Reflection Sensor in

these lessons, but it is basically a forward-pointing light sensor.

4

Hold an object in front of the Distance Sensor and watch the number

on top. This number indicates how far the object is from the sensor.

You will have to perform a calculation. The maximum value of the

sensor has been set to 1023. Here, we see a value of 939. This

means 939/1023*100 or ca. 92 %. This is the number that you will

see and use in the simulator any time a sensor value is used.

5 Measure the value at a distance of about 10 and 25 cm. as these are the values that you need

in your program. Calculate the percentage and then change your program so that it works with

the NXT.

Remember that the sensor values differ between sensors and, if your robot indicates 90%, the

same distance may be interpreted as a higher or lower value on another robot or with another

sensor.

RLT2-v4.3 Robotics 53

Making the Robot Move Forward

You are going to make the robot drive forward, but before you do so, you

have to insert the measured values into your program.

3B.3 Assignment: Making the Robot Move Forward

You are going to change the sensor values for your program and then

upload it to the robot. You are now ready to make the robot move.

3B.3 Making the Robot Move

1

Continue using the program from 3B, but change the sensor

values in the icon where the sensor value is indicated as a number

and replace it with the percentage from your measurement.

2

Make sure the robot startup menu is visible. If the TST button was

pressed, you can use the orange button to return to the main

menu. The robot is now ready for a new command.

3

Press the RUN button, just as you did on the simulator. You will

see four simulated lamps on the screen that represent four leds for

Blue, Green, Yellow and Red. You will see the red led blinking.

This means that the program is running. This led is called the

heartbeat. If the red led is not blinking, something is wrong with

your program.

4 If your program is correct and you have entered the right values in the program, when you

hold your hand in front of the sensor, the robot will move toward you. If it does not do this,

check if your program works on the simulator. If it still does not work, check that it has been

loaded correctly and that all cables on the robot are connected correctly. The cables for the

motors should be on ports A and C and should not be crossed. The sensors should be

connected to ports 1 and 4 and the distance sensor to port 3.

Test 3C: Written Test on Chapters 1-3

There is a written test once you have completed these three chapters. (It

is not the same test that you find at the end of this chapter.)

3.6 In Practice

In this module, we only use the Lego MindStorms robot or the JoBot if you

are following the Java version. In practice, however, robots are being used

more and more. The first were the so-called industrial robots, like the

ones used in factories. Just like computers, they are a part of modern

society and we could not work without them.

The military also uses robots in a variety of situations: not only to detect

and remove landmines, but also as unmanned and autonomous airplanes

and boats.

RLT2-v4.3 Robotics 54

Fig 36 TU Eindhoven Soccer Robots: runner up

world champion for the fourth time in 2012.

Slowly, robots are entering our daily lives. The first domestic robots are

now appearing on the market; manufacturers such as Honda and Toyota

have been working on their development for years.

Nowadays, however, robots are mostly

used by scientists for research purposes.

This is done to gain a good understanding

of the problems involved in the

development of robots. Robot Soccer

(football) is one of the most important

research topics. In this discipline, a

number of robots have to cooperate,

learn about their environment and

communicate with each other.

The scientific community has set itself a

goal: allow a team of soccer-playing

robots to defeat the human world

champions by 2050. The RoboCup World

Championships are held yearly and progress is made every year. We are

still far from reaching our goal, but soccer matches between robots

already are very spectacular.

3.7 Test

1. What needs to be done to the NXT before you use it with RoboPAL?

2. Where can you find the ‘number’ of your robot?

3. What mode should RoboPAL be in to upload a program onto the NXT?

4. If you are not able to upload a program to your robot, what could be

wrong?

5. How can you read the values of the sensors?

RLT2-v4.3 Robotics 55

Fig 37: rescue field.

4. Driving Over the Rescue Field

Now that you know how to work with the simulator and the robot,

you are ready to make the robot do even more.

We are going to make it follow a road on a field and move along an

imaginary square. You will find that this is not easy and really

demands a different approach, but first we will first try the naïve

approach. The way this is programmed seems to be a rather easy

solution. In the second and third parts of this module, we will look at

other solutions and point out further possible approaches.

4.1 You will learn

 to set the speed of the robot

 to make the robot stop, after a certain time, by counting

 to let the robot make turns

 to show a message on the display

4.2 You will need

 a computer with RoboPAL and the simulator

 a robot

 the rescue field

 the program DriveBehavior

4.3 You will experiment with

 making the robot move forward for 2 seconds

and then stop

 letting the robot make turns

 programming it to follow part of a road

4.4 After following this chapter, you will be able to

 describe the properties of a robot environment from the simulator and

the actual situation on the rescue field

 explain why following a fixed pattern is difficult

 explain what a subroutine is and be able to use one

 make a simple program in which a robot moves straight ahead and

makes turns

RLT2-v4.3 Robotics 56

4.5 Assignments

From here on, we will make quite a few changes to several programs. So,

it will be wise to save your programs frequently.

4A.1 assignment: Let the Robot Stop by Counting

When you start the program you will see that the robot moves forward to

the border of the field or just beyond it. Driving to the border of the field

is not exactly what we want. The robot should move forward and then

stop.

So, we need to tell the robot that it needs to stop moving after a while.

We use the stopwatch, which counts how long the robot has been moving

forward, to do this.

To make the robot faces a given direction, you have to give it the right

speed and modify the timing.

4A.1 Modifying the Driving Speed

1

Load the program 4A Drive Behavior and look at

the FlowCodeSheet. It is called RobotDrive here.

2

On the left, you can see the program that makes

the robot move forward at a speed of 60 for 1

second.

Type # Assignment Description
 4A DriveBehavior Changing the robot’s speed

 4A.1 DriveBehavior Adapting the ‘Drive’ speed

4B DriveBehavior Starting the program

 4B.1 Code change Showing the current status

 4B.2 Code change Cleaning up your program

 4C DriveBehavior Driving forward and stopping

 4C.1 DriveBehavior Making the robot drive forward

 4C.2 DriveBehavior Making a turn

 4D SubRoutine Using a subroutine

 4D.1 SubRoutine Making a subroutine

 4D.2 SubRoutine Using the subroutine

 4D.3 SubRoutine Making the Main program

 4E SubRoutine Driving in a square

 4E.1 SubRoutine Making the robot move in an imaginary square

RLT2-v4.3 Robotics 57

3

Use the properties to change the speed to 80 and

then set the stopwatch to 5 seconds. Please note

that DriveStraightAhead also has a Duration. We

are NOT going to use it. We will set the timing

through the stopwatch because it makes it easier to

change the program again.

Select the numbers from the stopwatch drop-down

list or type in a number. In RoboPAL, we always

use a decimal point (not a comma) as is customary

in all programming languages.

4

Start your program in the simulator and move the

robot to the starting point as shown on the left. Use

the right mouse button, if you need to make the

robot face a different position. Use the second icon

above the Control Panel to set the field view to 2D.

This makes it easier to place the robot in the right

position.

Start the program by pressing the triangular RUN

button. The robot will move forward and beyond the

field. This is not what we want. Change the

program so that it stops right in front of the first

curve to the right. Watch the counter in the bottom

left and determine after how many seconds you

must stop it. Change the program and save it when

it works as 4A.1 – Drive Behavior.

Tip: If you have been using RoboPAL for a while, you will have made

several changes to your program. Save it after every change so you can

always restart with the most recent version in case something goes wrong.

Indicators

4B.1 assignment: Showing the Current Status

While your program is running, it can be useful to know how far it has

progressed. There are a number of ways to do this. We can turn the leds

on the display on and off or we can have it sound a number of beeps to

understand what part of the program it is running.

4B.1 Showing the Current Status

1

Save your program as 4B.1 – Drive Behavior.

When the robot reaches the first curve, we want to

it to signal that it has arrived. We have several

options. One is to turn on one of the Leds on the

NXT display or to show a text. The other one is to

make the robot sound a beep.

RLT2-v4.3 Robotics 58

2

First, we will let the robot sound a beep when it

reaches the first curve. Select the MusicalNote

from Lights and Sounds and insert it right after the

stopwatch. If you do not change anything it will play

a C, but you can modify the properties to change

the pitch.

3

We can also turn on a lamp on the LCD screen.

You do this with the led icons, which also are in

Lights and Sounds.

4

Test this program in the simulator and then on the

NXT to find out which indicator is best for you. The

lamp is practical, but in this case the program stops

and returns directly to the main menu, so you will

not see the lamps. The lamps are only useful as

long as the program continues to run.

5

A better possibility is to display a short text on the

LCD screen. You do that with the

LCDDebugMessage icon from Lights and Sounds.

You can choose to display three short messages or

show the content of a variable. Use the properties

of the LCDDebugMessage for this. You can insert

either a variable or a text message in each of the

three fields.

6

While you are running your program you will see

the text and the LEDs on the screen. Do not forget

to turn the leds and/or the messages off when the

situation they are representing no longer exists.

Old indicators that are left on are frequently the

cause of misunderstandings.

Cleaning Up Your Program

4B.2 assignment: Cleaning Up Your Program

If you make frequent changes to your program, it may end up not looking

very tidy. The program may not be nicely lined up or maybe you think it

should look different. There may also be some icons in it that you are not

even using any more. RoboPAL provides tools to help you clean up your

program.

4B.2 Cleaning Up Your Program

1

If you have been busily working and have tried out

various possibilities, your screen might look like the

one on the left. Your program is in the middle and

there are a number of unused icons scattered

around it.

Insert a number of unused icons into your program

and then try the following steps, to clean it up.

RLT2-v4.3 Robotics 59

2

Naturally, you can remove each icon manually, by

clicking on them and then pressing delete, but if

you use the icon with the brush, RoboPAL will

automatically remove all the icons that are not

connected to anything.

3

Your program should now look as you meant it to.

You can move each icon individually with the move

cursor, but you can also move all of them together.

4

First, select all icons that you want to move with the

four-arrow cursor. You can select multiple icons by

dragging a rectangle around them with the cursor,

but you can also select individual icons by holding

the Shift key down while clicking them.

Then, press the right mouse button and keep it

pressed while dragging the icons to the place

where you want them and then releasing the

mouse button.

5

You can also use the hand cursor to move all the

icons in your program around. Be sure to reset the

“origin” (that is the position of the left upper corner)

so the icons are neatly placed on the left side.

Finally, you can also use the magnifying glasses to

make the icons larger or smaller (or zoom in or out

with the mouse).

Try out the various possibilities, so that you know

what is available and how these cursors work.

Going Back to an Earlier Version

If your program does not work and you want to revert to an earlier version,

go back to the original of DriveBehavior or reload the last saved version of

your program. You can then insert the most recent changes and resume

where you left off.

Making a Turn

4C.1 assignment: Moving Forward and Stopping

We will now work on the rescue field with the Rescue examples. You will

be adding new parts. Follow the detailed assignments if you find these

steps too difficult.

Please note that the program also contains instructions on how to show

information on the LCD display. More details on this can be found in

Assignment 4B in this chapter.

RLT2-v4.3 Robotics 60

4C.1 Making the Robot Move Forward

1

Load program 4A Drive Behavior again, to start

working with a fresh copy of the program and save it

as 4C.1 – Drive Behavior

2

Set the value of the Stopwatch to 2.0 seconds. Save

your program every time you make changes.

4C.2 assignment: Making a Turn by Counting

A two-wheeled robot makes turns just like a wheelchair. If you make the

right wheel turn slower than the left wheel, the robot will turn to the

right. You will now try to create a new part for an existing program to

make the robot turn. At the end of the turn, the robot must stop.

4C.2 Making a Turn

1

Save your program as 4C.2 – Drive Behavior. You

are going to have your robot make its first turn.

2

Add a DriveSwurveRight icon to the program

followed by another Stopwatch. You must be sure

the turn is not too sharp, so that the robot can

follow the curving black line. The standard setting

for Steering is 60, but this is too sharp. So, you

have to change the Steering property.

3

Start the simulator and find out step-by-step what

kind of turn you need to make and how long it

should last so that the robot stops at the yellow

line. Save your program and write down the values

that you are using, as you will need them again

later.

Using a Subroutine

Your robot is now able to follow the black line until it reaches the yellow

line. You did this by using a combination of a Driver icon and a Stopwatch

icon. The Driver icons also contain a Duration that you can change in their

Properties. Although this is a good solution, we are going to show you

something else that will help you further develop your programs: the use

of a Subroutine.

4D.1 assignment: A More Flexible Program - Using a Subroutine

Whenever we need to program several movements, we end up using the

same combination of code with different values for the Driver and

Stopwatch icons. This is not very efficient as it takes up extra space in the

RLT2-v4.3 Robotics 61

program. In addition, the code tends to become lengthy and unreadable.

Too much code makes the purpose of a program hard to understand.

The solution is to rewrite the code to do the same thing but through a

series of subroutines. In a subroutine, you specify what needs to be done

and the different values are handed over to the subroutine in the form of

parameters. This makes the code variable. These values were previously

fixed in the program, now they can easily be changed.

FlowCode 6 shows a part of code that is repeated twice in our program.

FlowCode 6: Same pattern with different values

We can put this sequence in a subroutine in which the fixed values are

replaced by variables. We call these variables the parameters of the

subroutine. Moreover, the four icons can be reduced into just one. First,

we start by combining the Driver and the Stopwatch into a single icon.

These commands are executed

When the subroutine is called.

The parameters in the subroutine get

The same values as in the first example.

FlowCode 7: These icons perform the same operation as FlowCode 6

You can see here that the different values used in FlowCode 6 have been

replaced by variables. To achieve the same results as FlowCode 7, we just

need to call the subroutine and insert the values that we had in the code.

You can see how this works in FlowCode 8. The explanation is given below.

FlowCode 8: The RobotDrive Subroutine

RLT2-v4.3 Robotics 62

4D.1 Making a Subroutine

1

Save your program as 4D.1 – Subroutine. You will

now make a subroutine.

2

We will make the FlowCode of RobotDrive so

generic that it can handle any type of movement.

First, remove the two icons in front of the Finish

icon and insert the Finish next to the first two icons.

This is our basic program.

3

Remove the DriveStraightAhead icon and replace it

with a DriveAny icon. We have to make sure that

the DriveAny icon knows how fast to drive and

what the Steering value is.

4

This information will be provided to the icon from

outside this program in the form of Parameters. It is

just like the Properties that we saw before, but here

we make our own properties using a Parameter.

In this FlowCode, we will create three variables to

input the required values.

5

Go to the Toolbox and select a Variable icon from

Variables. Go to the properties of this new Variable

and give it the name Speed. Then select the INT

value (Integer means a whole number, so without

any decimal positions) from Data Type. Set the

Default value to 50. This means that the variable

Speed will get a value of 50 if no other value is

transmitted to it.

6

Then, make two new variables and call them

Steering and Delay. Give the Steering variable a

default value of 0 (int) and the Delay variable 2

seconds using DataType Time.

7

Now, we have to tell the icons in the subroutine

where they can find their property values. Go to the

Properties of DriveAny and select the name of the

Speed variable from its properties instead of a fixed

number.

This will make the speed of this icon variable and

modifiable by the caller of the subroutine. If you do

change a value, we call it a ‘constant’ but we now

have turned it into a ‘variable’.

8

In the same manner, change the Steering with the

Steering variable. In StopWatch, change the Delay

property and connect it to the Delay variable.

Your program should look like the one on the left.

Save your program and then continue with the next

assignment.

RLT2-v4.3 Robotics 63

4D.2 assignment: Using the Subroutine

The subroutine in FlowCode 8 makes sure that the robot will start moving

in the desired direction at the desired speed. Then, it waits for some time

and then returns. Where does it return to?

A subroutine must always be activated by another part of a program. We

refer to this as a CALL to a subroutine.

So we must have another program that calls this subroutine. We are going

to make that program now. You will see that the subroutine is basically

nothing but a new icon that we make ourselves.

You can use this feature to expand the programming environment with a

variety of new icons, or functions, as they are also called.

4D.2 Using the Subroutine

1

Save your program as 4D.2 – Subroutine. You are

now going to use the subroutine.

2

So far, every program we have used consisted of a

single FlowCode sheet, but in order to use

subroutines we need a second FlowCode sheet.

Go to the list on the top right (it is called the Project

Browser) and use the right mouse button to select

the Subroutine menu.

Select ‘Add New FlowCode Sheet’ from the menu.

3

RoboPAL will ask you to name the new

FlowCodeSheet. Call it Main and click on OK. Main

means that this is the main program. Every

program that uses subroutines has a main

program, which is where the program begins. But

how does the robot know where to begin?

4

Go to the RobotWorldSheet and select the robot. A

robot has a number of Properties just as the icons

in the FlowCodeSheet.

5

Look at the properties of the robot. Select

Main.FLW from the Application list. This will allow

you to tell the robot to start executing the Main

program. Sometimes, it is useful to test a single

subroutine at a time. You can do this by selecting

RobotDrive, for example.

RLT2-v4.3 Robotics 64

6

The robot has more properties. The Rotation is set

automatically when you rotate the robot in the

RobotWorldSheet. The only other parameter that

we will be using here is the IR Sensor Separation,

that we already described briefly in Chapter 1. You

only need to change it if the distance between the

light sensors on your robot is different from the

standard 6.5 cm. Save your program.

Making the Main Program

4D.3 assignment: Making the Main Program

Now we need to make the Main program and make sure that the robot

moves forward until it finds the yellow line. This time, however, we are

going to use subroutines. We have to change the program and use the two

icons from program 4D.1.

4D.3 Making the Main Program

1

First save your program as 4D.3 – Subroutine.

Go to the Project Browser on the right at the top

and select Main.FLW and drag it to the

FlowCodeSheet. You now have an empty screen at

the bottom with the name Main. Now, insert a Start

and a Finish icon from Program Flow. You will be

creating the program between these two icons.

2

Also choose Subroutine twice from Program Flow

and place the two icons between the Start and

Finish icons and connect them. The program now

knows that it has to call a subroutine twice, but it

does not know which subroutine, yet. That is what

we will tell it next.

3

If you try to execute or even save this program, you

will get a RoboPAL error message, because it does

not know what to do with these two icons. So we

must now tell it what to do.

4

Select the first subroutine icon and go to its

properties. Select Subroutine and choose

RobotDrive from the list. Do the same with the

second subroutine.

You can also select a color for the subroutine, so

that you can easily tell which subroutine the

program is calling. It is a good idea to always use

the same color for the same subroutine.

RLT2-v4.3 Robotics 65

5

Once you have done this, the program will change

the icons. It will put the name of the subroutine

above the icons and display their parameters. You

can now insert new values in the parameters of

each subroutine. These values will be used when

the subroutines are executed.

6

Use the same values you found earlier in program

4C.2 and insert them in the Properties of the

Subroutine call. Save your program.

7

Now, try to run your program in the simulator and if

it works well upload it to the robot. If everything

works as expected, your robot should drive up to

the yellow line. This version of the program does

exactly the same as the previous, but it is more

suited for inserting new actions in the following

lessons.

4E.1 assignment: Driving in a Square

You have made significant progress with your program. You have used the

flexible idea of a subroutine and have found out how to make the robot

follow the first part of the road and stop at the yellow line.

The idea now is that you are going to use what you have learned so far to

make a new program, all by yourself, that will make the robot drive along

an imaginary square. You will find some help for this task below. You have

to change this program to use a subroutine.

In assignment 4E, the robot will move along an imaginary square. This

means that the robot must move forward for a while, then make a 900 turn,

then drive forward again and so on.

4E.1 Making the Robot Drive along an Imaginary Square

1

Select Drive Behavior 4A from NLT again. Save the

program as 4E.1 – Drive Square.

2

We want the robot to drive forward for a short while

and then make a 90 degree turn.

3

You have a number of possibilities to find the best

way to turn a corner. You can change the Speed, the

Steering or the time on the Stopwatch (making it

shorter or longer). Together these three variables

determine how sharp the turn will be.

RLT2-v4.3 Robotics 66

4

First, test if this program can make a 90 degree turn

on the simulator. Then, modify the program until the

robot makes the turn correctly. Write down the value

that works best.

5

To make the robot drive along an imaginary square,

it has to execute this piece of code four times. You

can do this with a subroutine, so make a Main

program and make sure that the subroutine is first

called once and then added a second time.

6

Test your program in the simulator to see if it makes

the turn correctly the second time, too. If it does not,

change the turn properties a little. You will see that

the error in the turn angle will get larger as you

execute the subroutine various times.

If you cannot get it to work properly, reread the parts

of this chapter on subroutines.

7

Now, change your program to call the subroutine

four times, so that the robot ends at the same place

where it started.

8

The last step is to be able to change the size of the

square by introducing a single parameter. Add a

local variable to the Main program and to the

subroutine.

Use this parameter to tell the subroutine for how long

to move along a straight side of the imaginary

square. If the corners stay the same, you can resize

the square very easily in this way. By inserting the

value into a single variable in Main and passing it to

the subroutine, you can tell the program how big the

imaginary square must be.

9

If your program works fine, test it on the NXT robot

on the field. You will find that now it is more difficult

to make the robot drive in an exact square. Try to

find out what causes this.

4.6 In Practice

In these lessons, we have only used wheeled robots; in our case, a robot

with two powered wheels and a castor wheel. In practice, most robots are

either have wheels or cannot move at all, like an industrial robot. Military

robots are mostly wheeled robots, robots with caterpillar tracks or flying

robots.

RLT2-v4.3 Robotics 67

Fig 38: the Tulip

However, the most interesting robots are walking robots. There are

many different robots on the market for research purposes that vary

in price (1.000-15.000 Euro). If a robot is to be useful in and around

the house, it will have to walk around and be able to use the tools

that we use ourselves. A walking robot that can use a vacuum cleaner

or can make the beds is far more useful than having individual,

specialized robots for each task. So being able to walk is very

important.

In the Netherlands, the three technical universities are especially

active in this area. The newest robot, the Tulip of Dutch Robotics,

has been developed by the Bio Robotics Lab at the Technical

University of Delft and is a very advanced, state-of-the-art and

internationally renowned walking robot.

4.7 Test

1. What does flowcode 9 do, describe this in pseudo code.

FlowCode 9

2. How long does it take to execute the code in FlowCode 9?

3. How big is the turn that this code makes?

4. Insert FlowCode 9 into a subroutine and change the size of the turn by

using a parameter.

5. How can you make a robot do the same thing for a couple of seconds?

6. What kind of indicators can you use in RoboPAL?

RLT2-v4.3 Robotics 68

Intro Part 2

Part two focuses on the Rescue mission in which the robot uses a line

follower to find and retrieve a dangerous container in the yellow swamp

area. The Sense-Reason-Act loop, a basic programming tool that is used in

all robotics programs, is introduced in Part 2.

Intro Part 3

The third part of the RLT module Robotics mainly addresses what we call

Adaptive Behavior. This is a slightly more complicated section aimed at

higher classes or to be used as follow-up lessons for information technology

classes. The Sense-Reason-Act loop is treated in greater detail and we

introduce the use of so-called State Machines.

We will be copying the behavior of a (very) simple organism that displays

flee behavior, which can become curious or move around randomly.

So, a choice must be made on how to continue after part 1. Part 3 is more

difficult and delves deeper into the subject, while Part 2 is simpler and

focuses on the Rescue Mission.

Clearly, if you have enough time, both parts may be completed.

