
RLT2-v4.3 Robotics 1

Robotics 2

RLT Robotics Learning Track

Module for Level 2

Version 4.3 – Sept 2012

RLT2-v4.3 Robotics 2

Colophon

This Robotics module is part of the RoboDidactics Robotics Learning Track

(RLT). The material presented in this module is based on the Dutch

Robotics material developed by the author for the SLO Certified Robotics

Module.

All the original and associated material for the RoboDidactics Learning

Track may be downloaded from the Phyrtual site or from the RoboPal for

NXT site at www.virtualbreadboard.com. It can also be found in the English

download section of www.robocupjunior.nl. Teachers are permitted to

modify this material for use in their own lessons, provided these changes

are reported in the colophon of the modified material. The Phyrtual site

can be reached through www.phyrtual.org.

This module was developed and translated by the author (Peter van Lith)

as part of a cooperation agreement with the Fondazione Mondo Digitale in

Rome, Italy in 2010. The RoboPAL software used in this version has been

developed with VirtualBreadBoard by James Caska.

This version is developed for use with the Lego MindStorms NXT and

RoboPAL software. A more extensive version is available (currently only

in Dutch). It is based on robots that can be programmed in Java, using

the Java Simulator and Eclipse.

This NXT version is easy to use because it uses a graphical programming

language.

The module consists of three parts. The first is the basic version needed

for all further lessons. The second part deals with the RoboCup Junior

Rescue challenge. The more demanding third part is optional and deals

with a simple simulated organism, based on reactive behaviour.

Modified versions of this module may only be distributed if this colophon

states that it is a modified version, including the name of the author of the

modifications.

© 2010/12. Version 4.3

The copyright of this module rests with RoboCup Junior Netherlands that is

the owner under the terms of the creative commons license as mentioned

below.

The authors of this module have used material from third parties during its

development and have received permission to use this material. During

http://www.virtualbreadboard.com/
http://www.robocupjunior.nl/
http://www.phyrtual.org/

RLT2-v4.3 Robotics 3

research into the rights of text and illustrations, we have acted carefully.

Should, however, any person or organization deem to have rights to parts

of the text or illustrations, they are advised to contact RoboCup Junior

Netherlands (info@robocupjunior.nl).

This module has been compiled with care and has been tested extensively

by the authors and several test schools. The authors accept no

responsibility for incorrect or incomplete parts of this module, nor do they

accept any claims for damages as a result of using this module or its

associated software.

This module is distributed under the Creative Commons License 3.0,

Netherlands.

►http://creativecommons.org/licenses/by-nc-sa/3.0/nl

http://creativecommons.org/licenses/by-nc-sa/2.5/nl

RLT2-v4.3 Robotics 4

CONTENTS

COLOPHON .. 2

INTRODUCTION .. 5

5. SENSORS: THE ‘SENSE’ PHASE ... 6

THE SENSE-REASON-ACT LOOP .. 7
SENSES VERSUS SENSORS .. 8
READING SENSOR VALUES IN THE SIMULATOR ... 9
DRAWING A GRAPH ... 15

6. PROCESSING: THE ‘REASON’ PHASE .. 20

THE SENSE-REASON-ACT LOOP .. 21
READING THE ROBOT SENSORS ... 21
A LINE-FOLLOWER WITH A SINGLE SENSOR ... 24
TUNING THE LINE-FOLLOWER... 25

7. ACTUATORS: THE ‘ACT’ PHASE .. 29

SERVOMOTORS ... 30
ROTATIONAL DIRECTION OF THE MOTORS .. 31
ADAPTIVE BEHAVIOR .. 31
LEDS AS INDICATORS .. 32
A LINE-FOLLOWER WITH TWO SENSORS ... 32
FOLLOWING THE ROAD BY USING A STOP CONDITION ... 34

RLT2-v4.3 Robotics 5

Fig 1: Rescue Field

Figuur 76: rescueveld.

Introduction

Intro Part 2

The Robotics module consists of three parts that may be followed

individually. In Part One, the emphasis was on getting to know the robot,

its development environment and programming the robot with RoboPAL.

In this second part, you will learn how to program a Rescue Mission in

which a dangerous container has to be removed from a swamp (the yellow

area). This part is intended for middle grade students.

The third part is more difficult and concentrates on developing a small

Robotics project that addresses some of the aspects of Artificial

Intelligence that are used in Robotics. This part is more suitable for

theoretical education, but may also serve as an introduction to information

technology.

RLT2-v4.3 Robotics 6

5. Sensors: the ‘Sense’ Phase

In the first part of this module, you learned that if your robot does not

have sufficient information, it is not capable of following a line. This

happens because the robot does not know where it is with respect to its

desired trajectory and it simply follows the described path. We can use

sensors to collect the information necessary to correct its path.

In this chapter, we introduce an important principle, the Sense-Reason-Act

loop. Using this loop construction, the robot will be able to determine how

to behave and adapt to changing conditions.

5.1 You will learn

 how to use sensors

 how to handle sensor data

 what properties sensors have

 what sensors can do

5.2 You will need

 a robot and a computer with RoboPAL

 a rescue field

 the Calibrate, DriveBehavior and CuriousBehavior programs

5.3 You will experiment with

 calibrating the left reflection sensor for yellow, green and black

 making a table with measurement values

 programming the robot to drive up to the black line

 setting a time limit

 adjusting the sensitivity of the sensors

 searching the swamp in the rescue field

5.4 After following this chapter, you will be able

 to calibrate sensors

 to make the robot react to colors and objects

 to use loop constructions

 to draw a graph of the measured values of a sensor and determine

their linearity

 to explain how a Sense-Reason-Act loop works.

RLT2-v4.3 Robotics 7

Type # Assignment Description

 5A Discussion How does a robot work?

 5A.1 Group discussion Where are the sensors located?

 5B CalibrateBehavior Reading sensor values

 5B.1 Calibration Reading sensor values in the simulator

 5B.2 Calibration Reading sensor values on the robot

 5C DriveBehavior Driving up to the black line

 5C.1 DriveBehavior Stopping on the black line

 5D Loops Making a loop

 5D.1 Loops Using a loop

 5E DriveBehavior Using a time limit

 5E.1 DriveBehavior Adding a time limit

 5F CuriousBehavior Making a graph

 5F.1 Measuring Drawing a graph

 5F.2 CuriousBehavior Changing CuriousBehavior

 5G DriveBehavior Mowing the grass

 5G.1 Search the Swamp Mowing the grass

 5G.2 Modification Using a subroutine

 5H Test Test on chapters 4 & 5

5.5 Explanation

The Sense-Reason-Act Loop

Three logical steps are used to control robots. As a matter of fact, you will

also find this true of the behavior of animals and possibly humans. First,

our senses observe things, the Sense step. Then, we determine what to do

with that information - the Reason (or thinking) step - and as a result of

this, we need to take an action, the Act step. As these three elements are

used in succession, we call this a loop or a repeat construction.

Fig 2: Sense-Reason-Act Loop

Robots use sensors to retrieve information from their environment. In this

chapter, you will investigate how robots perform the Sense step and use

the information they collect.

5A.1 Assignment: Group Discussion

 What sensors do we know about?

 In what type of equipment can we find them?

RLT2-v4.3 Robotics 8

Senses versus Sensors

In chapter 4, we saw that controlling the robot’s motors with fixed values

directly from the program does now work very well. Driving over a black

line using direct instructions is difficult and requires a lot of work. Even

small disturbances send a robot off-track, so we must find a different

method. By observing the environment with its sensors, a robot can adapt

to the circumstances around it and operate more flexibly to achieve its

goal.

Living organisms, whether they are single-celled or human beings,

understand their environment through their senses. Robots are equipped

with sensors for the same reason. There is a large variety of sensors, but in

general they serve the same function as human or animal senses.

Some sensors, like infrared or Röntgen rays, even detect information that

we cannot gather with our senses. Most sensors, however, are more limited

than our senses; indeed, we sometimes need to use several different

sensors to match the operation of just one of our senses.

We are so familiar with our senses that we often assume that sensors on a

robot work in an identical manner, but this is often not true. The

processing of raw data by a sound sensor, for instance, may lead to very

different conclusions than those reached by people using their ears. In

addition, our experiences are highly influenced by the associations our

brains make with these observations (i.e., optical illusions).

Moreover, two sensors that have the same function may provide different

results due to small differences in their manufacturing process. These

differences make it necessary to match the sensors. We do this on the

basis of a standard reference value. This process is called tuning.

When, for example, a sensor is tuned to represent raw data values on a

scale from 0 to 100, we call this process calibration. The process of

adapting the non-linear behavior of a sensor to linear behavior is also

called calibration. Calibration makes it a lot simpler to compare the values

of different sensors.

RLT2-v4.3 Robotics 9

Fig 3: Sensor Values in the Simulator

Reading Sensor Values in the Simulator

If you start the simulator with a rescue field and a robot, on the right side,

you will see the control panel with four dials. These dials display the

sensor values. They represent, from left to right, the values of the

following sensors:

 Left field sensor

 Reflection sensor (if connected).

 We do not use this sensor in these lessons.

 Distance sensor (Ultrasonic sensor)

 Right field sensor

5B.1 Assignment: Reading Sensor Values in the Simulator

Write down the values that you will need for your first calibration.

5B.1 Reading Sensor Values in the Simulator

1

Select RoboPAL 5B – Calibration from the examples and

save it as 5B.1 – Calibration.

Start this program in the simulator and watch the control

panel carefully. Place the robot on the yellow area as

shown on the left.

2

Press the TST button on the control panel to obtain the

calibration screen. It is the same as on the real NXT,

which you will be using later to collect calibration

information.

You can see that the Left and the Right Field sensors

both have a value of about 640 or 63%. This is the

standard value for Yellow.

3

Press the second icon above the Control Panel to view

the field from above. This view makes calibration easier

because you can judge the position of the robot better.

Use the mouse to move the robot to the green area and

look at what values the sensors display there.

4

Draw a table on a sheet of paper and write down the

sensor value for each color for both the left and right

sensors as displayed in the simulator. Then, put the robot

exactly on the black line. This is more difficult: watch how

the values change. The lowest values are displayed when

you place the sensor exactly on the black line. If your

robot is only partly on the line, the value will be

somewhere between that of green and black.

RLT2-v4.3 Robotics 10

5B.2 Assignment: Reading Sensor Values on the NXT

 The sensor values displayed in the simulator are just an approximation.

So, we will use the NXT to perform the same measurements on the real

field and get an idea of the differences.

 There usually also are differences between the Left and Right sensors

as well as between sensors on other robots.

 The real values are always slightly different from what you see on the

simulator. So, you will have to change your program.

5B.2 Reading Sensor Values on the Robot

1

Switch on your NXT. You do not need to load any

programs, the calibration program is already

installed.

Push the TST button and you will see the same

screen you saw in the simulator. Place your robot

on the Rescue field as shown on the left.

2

The screen on your NXT displays less information

than the simulator. The extra information displayed

in the simulator is only available on the NXT in

Level 1. We are working with Level 2.

3

Press TST on the start-up screen to view the

calibration panel and collect the sensor information.

Write down the values for Yellow of the Left and

Right sensors and compare them to those from the

simulator.

You will notice that these values are different.

Ambient light, light from outside and shadows

influence these values. Turn your robot in different

directions to see how the values change.

4

Also measure the values for Green and Black and

write them down on your sheet of paper. Be extra

careful with Black: watch the reflection of the red

leds on the surface. They must be exactly above

the black line to read the correct values.

Also compare these values with those from the

simulator. Keep this sheet of paper, because you

will need these values again for the programs that

you are about to make.

Driving Up to the Black Line

Suppose your robot has to stop on the black line. Each of the two field

sensors is able to read enough information to distinguish the green field

from the black line. You will make your robot drive forward and stop as

soon as, for instance, the left sensor detects a dark surface.

Use the Driver icons to make the robot move forward and read the sensor

value with the BranchIfHigher or BranchIfLower icons. As we have several

sensors, each sensor has a unique name.

RLT2-v4.3 Robotics 11

For now, you will only use the Left Field sensor - the Field-L - that you will

find in every BranchIf icon.

5C.1 Assignment: Stopping on the Black Line

 The RobotDrive FlowCode must be modified so that, in every iteration

of the loop, the left field sensor checks if it is driving over a dark area.

It is important to do this repeatedly otherwise the information will

only be read once and the robot may miss the black line.

 As black reflects the least amount of light, we need to check for a

value that is lower than that of Green or Yellow. You have these values

in the calibration data that you collected earlier. (See paragraph 5V -

‘Reading Sensor Values in the Simulator’.)

 To prevent the robot from driving off the field if it misses the black

line, you also need to keep count of how long the robot has been

moving. In chapter 4 of Part 1, you learned how to use a timer to

determine how long a robot has been executing a program. In this

version, the robot is programmed to stop after two seconds. So, there

is a good chance it will stop before the black line has even been

detected.

 You need to change the program so that the robot detects the black

line, but does not drive off the field. Add additional code to make the

robot stop in time.

5C.1 Stopping on the Black Line

1

Load program 5B - Calibration and make a safety

copy named 5C.1 – DriveBehavior.

2

Go to the main program and remove all the icons

except the ones shown on the left. The program

must let the robot drive forward for 5 seconds max.,

but we also want the robot to stop on the black line.

3

Instead of using a stopwatch, make the robot

detect the black line. This can be done with the

WaitForLowerThan icon. Replace the 50% value

with the value you found for Black.

Unfortunately, this approach will not work. It has

two problems.

4

First of all, the robot will not find any color that is

darker than black. However, as it moves over the

black line, it will briefly see a color with a value that

is in between that of Green and Black, as it is

crossing over these two colors.

RLT2-v4.3 Robotics 12

5 44%

 32%

 19%

 32%

 44%

So you need to specify a value that is higher than

the measured value for Black, but lower than that

of Green. This will ensure that the robot always

recognizes the black line. To avoid getting too

close to Green, the best option is to use a value

that is about 5% higher than that of Black.

6

In the WaitForLowerThan Properties, there is a

field called Margin. Insert 5% for the Margin so that

RoboPAL will interpret the value for black as a little

higher or lower than the measured value.

All icons that use a value have such a Margin. If

you do not specify a value, it will take the default

value, which also happens to be 5%.

7

This will make the robot react properly on the Black

line. However, there also is another problem. As

soon as the main program calls the subroutine, it

makes the robot drive forward and then wait for 5

seconds. Then, the subroutine returns to the main

program before checking for the black line. In the

meantime, however, the robot will have passed the

black line. How do we solve this?

8

If you set the Delay to zero, the subroutine will no

longer wait and will return directly to the main

program that checks for the black line. An even

better idea would be to have the robot emit a signal

when it detects the black line. So, test this program

in the simulator and save your final version.

9 Change the value in the program, using the values

you measured on the rescue field and then try the

program on the NXT on the field.

Using Loops

We have already seen some programs that use a loop. Making a loop

requires drawing lines, or pipes, between icons. We will first practice

making a loop and then use this method in subsequent programs. You

already did this in Chapter 2, but let’s review it.

5D.1 Assignment: Using a Loop

 At the beginning of this lesson, we showed you a picture of the Sense-

Reason-Act Loop. A Loop or repeat construction is a program that

repeats itself. As we have not used repeats yet, we will now look at

how to insert a loop in a program.

 We are going to change RobotDrive by inserting a Loop. We will see

why that is important in the following lessons.

RLT2-v4.3 Robotics 13

5D.1 Using a Loop

1

First load 5D – Loops and save it as 5D.1 – Loops.

In this program, the subroutine uses a stopwatch to

wait for a given amount of time to pass. However,

we have changed the stopwatch to wait for the

black line.

2

A wait command, however, only makes the

program wait. We would like to use this time to do

something: for instance, to read the sensor values.

Therefore, we will replace the StopWatch with a

LoopTimer icon.

3

A LoopTimer icon allows the program to continue

when the set amount of time has passed, but it also

has an exit at the bottom that the program uses

during the wait. We need to connect this exit to the

beginning of the program. We use the Merge Icon

from Program Flow to do this.

4

We have to connect the LoopTimer to the Merge

Icon. The simplest way of doing this is to use the

auto-magic Wiring Wizard. Use the Wiring Wizard

and watch how the connection is made. The

second icon in the icon bar lets you remove the

automatic connection.

5

Wiring is inserted from left to right and from top to

bottom. The Wizard looks for empty connections at

the same level and connects these automatically.

6

If the icons are not at the same level, things can go

wrong. Sometimes a program is just too

complicated for the Wizard and you will have to

make the connections manually with the Pipe

cursor. This was discussed in Chapter 2 of Part 1.

Using a Time Limit

Suppose that the robot starts moving, but misses the black line. It will then

drive off the field and bump into things or drive off the table. It is better

to insert a time limit that prevents the robot from driving off the field.

This is more difficult, however, because the program needs to consider

two situations at the same time.

First of all, we need to check for the black line and at the same time we

need to check that the robot is not driving longer than the set time. The

robot needs to stop when one of these two situations occurs.

This kind of situation is found in almost all robotic programs, so we need to

find a way to solve this problem.

RLT2-v4.3 Robotics 14

5E.1 Assignment: Adding a Time Limit

We will extend the DriveBehavior program with a check for the maximum

time that the robot moves forward to prevent it from driving off the field

if it misses the black line.

5E.1 Adding a Time Limit

1

Load program 5E – Time Limit and save it as 5E.1

– Time Limit.

As the subroutine is going to check for the black

line, we first need to remove this part from the Main

program.

2

We avoided this problem in the previous

assignment by eliminating one of the two

conditions: the wait command. However, this is not

a good solution if we want to include a maximum

time limit.

3

While the robot moves, RobotDrive must

continually check for the black line. The way we did

that was to wait for the black line, so the program

just stopped when it detected the black line.

4

Now, instead of waiting, we will check for the black

line and if we do NOT see it, we will continue doing

something else. We use the

BranchOn icon to do this. Specify the value for

Black and also insert a value in Margin.

5

If the BranchOn does NOT detect Black, we want

to keep checking how much time has passed. We

cannot do this with a StopWatch, since that would

wait and block the other actions. Instead, we will

use the LoopTimer from Program Flow.

6

If a given amount of time has not passed, the robot

continues to look for the Black line and to do this it

must return to the beginning of the program. We do

this by inserting a Merge icon after the Start icon

and connecting it with a LoopTimer.

7

We now have a program that executes commands

within a loop, until a maximum time limit has been

reached. As long as this loop executes, the

program will continue to check for the black line.

Once the black line is detected, the program exits

the loop and stops. So, we are checking for two

conditions at the same time. Try the program on

the simulator.

RLT2-v4.3 Robotics 15

Fig 4: Measure the distance between
the victim and the robot.

8

First, put the robot on the yellow field and then start

the simulator. It should now stop on the black line,

when the stop condition becomes true.

Now, put the robot further back on the field and

start the program again. The robot will stop in front

of the black line, because its time limit has expired.

Check if this works fine, if not, change your

program until it does.

Drawing a Graph

In the photo below, someone is making a measurement on the computer

screen. We are not going to do this on the screen. We will measure the

distance with the NXT on the field.

In the Rescue challenge, we use a can that is officially called “the Victim”.

In the original Rescue game, we used a puppet that was supposedly

drowning in the swamp. However, a reflecting object is easier to detect,

so we now use a can (wrapped in aluminum foil) and continue to call it the

victim.

We will measure the values of the

Distance Sensor at various

distances from the robot.

Fig 5: Move the robot 5 cm. away from the object every time to determine the sensor value.

RLT2-v4.3 Robotics 16

5F.1 Assignment: Drawing a Graph

The sensor values on the simulator are only an approximation, so we will

take measurements with the NXT to get an idea of the differences.

5F.1 Drawing a Graph

1

Switch on the NXT. As we are going to use the

distance sensor, press TST three times to obtain

the screen that displays the Distance (Dist) sensor

value. Of course your robot needs to have a

distance sensor connected to port 3.

2

Place a can or some other object in front of the

robot. Start at a distance of 5 cm and write down

the sensor value. Then move the object another

5cm away and take note of the value again.

Continue to do this until you reach the end of the

yellow field (or a distance of about 50 cm if you are

not using the rescue field).

3

Make a graph and plot the distance in centimeters

on the X axis and the measured values on the Y

axis. The graph will show you how to calculate the

value given the distance and vice versa.

You can also determine if the sensor characteristic

is linear (in a straight line). If you see a nice straight

line, it is easy to calculate the distance from the

value. If the graph is not a straight line, the sensor

is not linear and the formula will be much more

complicated.

5F.2 Assignment: Changing CuriousBehavior

Once you have written down the sensor values, try to modify

CuriousBehavior (the behavior that makes the robot drive forward when it

detects an object)..

5F.2 Changing CuriousBehavior

1

Load the program 5F – CuriousBehavior that you

used before and save it as 5F.2.

You have already used the distance sensor in this

program. You can now use your table and graph to

easily determine what value to insert.

RLT2-v4.3 Robotics 17

2

In chapter 2, you experimented with distance and

sensor sensitivity. You checked the field of view of

the sensor to understand how far and how wide the

sensor can detect objects.

Now, combine both graphs so that you can see the

distance vs. the sensor value in one graph and the

sensor value vs. the width of the field of view in the

other one. This will be a useful tool for the lessons

that follow.

3

Change your program based on what you have

found out about the sensor. Try to make your

program do the following: use the right sensor

value and to drive towards the first ball; however,

when it gets close, it should go towards the other

two balls, because they enter into its field of view.

Save your program as 5F.2 – CuriousBehavior.

Mowing the Grass in the Swamp Area

5G.1 Assignment: in practice: Mowing the Grass

 Make a program that searches the swamp area in a back-and-forth

manner by first driving forward to the green border, then making a

slight turn backward and then forward again, so that each cycle covers

a different part of the swamp.

 Use 5G – Search the Swamp as the basis for your program.

 Use a Loop. Use WaitForMatch to recognize the color of the field

(leave the Margin at its default value) and the LoopCounter to create

the loop. Look at the examples below to see what this looks like.

 Test your program in the simulator.

FlowCode 1

RLT2-v4.3 Robotics 18

The pseudo code could look like FlowCode 2.

 Turn off the leds

 Repeat the following:

 Drive forward

 Until the left sensor sees a green area

 Turn on the green led

 Drive backward

 Until you are on the yellow field again

 Turn off the green led

 Drive backward while making a slight turn

 Do this until the robot points in a different direction

 Repeat this procedure 10 times

 Sound a beep

 Stop the program

Code 2: Pseudo code searching the field.

5G.2 Assignment: Using a Subroutine

 Check your program to see if there are any parts that you can move to

a subroutine. In general, you do this for parts that have a similar

structure and only use different values for the parameters.

 Make the subroutine and pass the variables to it as parameters.

 Make sure that the Loop is created in the main program and that the

subroutine only contains commands to make the robot move. You can

copy and paste the program from RobotDrive to Main by selecting all

the icons and then pasting them on the clipboard with Edit Copy.

Then, go to Main and select Edit Paste and your program will now

appear in both flow code sheets. Delete the parts that you do not

need.

 Do not forget to specify that the starting program is Main in the robot

properties or only the subroutine will be executed.

 Test your program in the simulator. If it works ok then test it on the

NXT on the rescue field.

5.6 In Practice

In practice, we have robots that function in

the same manner. You have probably heard

about lawnmowers that operate

autonomously while you comfortably lounge

in a chair. The robot recognizes the

difference between green (grass) and black

(earth). There are also vacuum cleaners that

clean the living room in the same way. They

do not look at the floor, but look around

using distance sensors to prevent them from

bumping into the objects around them.

Fig 6: iRobot. Source: http://www.irobot.com.

RLT2-v4.3 Robotics 19

SO 5H: Test on Chapters 4 and 5

These chapters are completed by a written examination.

5.7 Test

1. The senses of living organisms look a lot like the sensors of robots, but

there also are big differences. Provide some examples.

2. When do you have to calibrate sensors?

3. What kind of information is collected by robot sensors? Explain, for

every sensor, what physical property is recorded and what values will

be presented.

4. Look at the program below and explain what happens when you run

this program and the robot is in the indicated position.

FlowCode 3

5. What happens to the program if you lower the value of the sensor?

6. And if you increase the value ?

RLT2-v4.3 Robotics 20

6. Processing: the ‘Reason’ Phase

Once a robot has used its sensors, it needs to do something with these

values. In the previous chapter, we made the robot stop, but of course a

robot can do more than this with its sensors. In this chapter, you will learn

how a robot can follow a line by using a sensor.

6.1 You will learn

 to read the values of robot sensors

 how to make the robot remember its calibration data

 how to control its motors

 how a line-follower works

6.2 You will need

 a NXT robot

 fully charged batteries

 a computer with RoboPAL

 a rescue field

 a LineFollower program

6.3 You will experiment with

 Using the calibration values of the robot in a

program

 making a program that follows a line using a single sensor

Type # Assignment Description

6A Calibrate Automatic calibration

 6A.1 Calibrate Automatic calibration

 6A.2 Calibrate Using the calibration data

 6B Line-Follower The first line-follower

 6B.1 Line- Follower A line-follower using a single sensor

 6B.2 Experimenting Experimenting with settings

 6B.3 Testing Testing on the robot

 6C Line-Follower On the other side of the line

 6C.1 Testing What needs to be changed?

RLT2-v4.3 Robotics 21

6.4 After following this chapter, you will be able

 to use a simple line-follower

 to read the sensor values of a robot

 to calibrate the field sensors of a robot

6.5 Explanation

The Sense-Reason-Act Loop

In the Sense step, the robot observes its environment. Then, it needs to

determine what to do with that information. This is called the Reason or

processing step and it is followed by an appropriate action, the Act step.

Fig 7: Sense, Reason, Act Loop.

In the Reason step, the information from the environment is processed and

used to perform a sensible action.

Reading the Robot Sensors

You have already read the sensor values several times and written down

their values. However, it is much simpler to let the program store these

values by itself, so that you do not have to make changes to your program

every time a reading changes. We will do this through a new calibration

subroutine.

Automatic Calibration

Your robot recognizes the color black by making a comparison. It checks if

the value is much lower than the value for green. You should never try to

make the robot recognize the exact value you measured for black. Even

the smallest fluctuations caused by shadows will prevent the robot from

reacting as expected. Keep in mind that when a sensor is halfway between

green and black, the sensor registers a value that is in between these two

values.

If you want to detect the black line reliably, you should use a value that is

lower than green, but higher than black. The same applies for yellow. In

this case, however, we will use values that are higher than green and

lower than the measured value for yellow to keep a safety margin.

Safety margins are very important and determine both the precision and

the speed at which a robot reacts. RoboPAL keeps a standard margin of 5%,

RLT2-v4.3 Robotics 22

but you can change this value by selecting the Perspective tab in the

startup menu (See Chapter 3A, Part 1).

You can also change the margin for every icon that reads a sensor value. If

you specify Default in the Margin field, it will use the value that you

inserted in the Perspective, but you can override this if you temporarily

want to use a different value.

It is also important to take the ambient lighting condition into account. If,

for instance, your robot is directly under a lamp or close to a window, the

light that shines on the field and/or shadows can influence the sensors.

Sensors detect shadows as darker areas than the parts of the field that are

well lit. So, it is important to let your robot measure the sensor values

from different angles.

Nonetheless, repeatedly measuring values and changing your program

takes a lot of time and if you happen to forget to change one of the values,

your program will no longer work. So it is much easier to make the robot

do this by itself. Therefore, we are going to develop a program that

calibrates the sensors automatically.

6A.1 Assignment: Automatic Calibration

Instead of writing down the sensor values and modifying your program,

make the robot do this.

6A.1 Automatic Calibration

1

Load program 6A - Calibration and save it as 6A.1 –

Calibration.

Make a new FlowCodeSheet and call it Calibrate. Remove

the Driver icon in the middle.

Also make three global variables for Black, Green and

Yellow. Use the Global Green, GlobalYellow and

GlobalBlack icons from Variables.

2

We have used Variables before, but here we will use

Global variables. This means that we can use them

anywhere in a project. The variables that we used before

as parameters in a subroutine are called Local variables.

They are only valid within a subroutine and do not exist

outside of the subroutine. Variables also have a DataType,

like Time or Int. In this case the variable are of the type

“Level”.

3

Use the Record icon from Sensor Flow. This icon reads a

sensor value and stores the measured value as a variable.

In Properties, you can specify in which variable to store the

value.

RLT2-v4.3 Robotics 23

4

As you need to do this for each color, you will need three

icons. The robot has to be placed directly above the

corresponding color, so we need something to indicate that

you have to place the robot in a specific place.

5

Use the LCDMessage icon from Lights and Sounds to

insert text under the left and right buttons. Select YELLOW

from the Properties. This is a request to put the robot on

the yellow area of the field. We also need to know when

this action has been completed.

6

So, we have the program wait until the left button is

pressed. This is the sign that the robot is correctly placed

above the yellow area. Use the WaitForButtonPressed icon

from Touch Button Flow and select Left in the Properties.

7

Read and store the other two colors in the same manner.

At the end, have the robot sound a short beep and make

sure that the last message is erased from the LCD screen.

This completes the calibration program.

8

The last step is to test the program with the simulator.

Make sure that the Calibrate subroutine is the startup

program. In this way, you can test only this single

subroutine, bypassing the Main program temporarily. Make

sure it works.

9

You can now use the variables Yellow, Green and Black

anywhere in your program, rather than having to measure

and write down the values every time. The Margin is

automatically set to 5% and if you want to use a different

margin, you can specify it when you use a sensor. Save

your program.

6A.2 Assignment: Using the Calibration

 You have now stored the sensor readings, but you must also start using

them in your program. You need to do a number of things to this.

 Call the Calibration subroutine in your main program, but make sure

this only happens the first time, when you start the robot.

 The values that you have stored must also be used in the program. So,

you have to change all the icons that use color values. From now on,

you will use variable names for colors rather than numbers.

RLT2-v4.3 Robotics 24

6A.2 Using the Calibration Data

1

Save the program as 6A2 – Calibration. Select your robot

and choose Main as your startup program in Properties.

2

Drag Main to the FlowCode sheet. Insert a new Subroutine

called Calibrate.

Give the icon the color Black (or another color) to show that

it concerns a different subroutine. Also change the note

that the program plays when it is finished, so that you will

hear a different sound from the one in the calibration.

3

Test your program in the simulator and check that it reacts

properly to the black line, but … OOPS! We have a

problem. The robot is still on the black line. It will start

moving and miss it.

4

We want the robot to wait until we have placed it at the

starting point.

5

We need to change the calibration program to do this.

Change the last part of the program so that a RUN

message appears on the screen and the program waits

until the right button is pressed. Now try again, but first put

the robot back on the yellow area.

6

If this works, try to do the same with the NXT and make

sure it works on the rescue field.

A Line-Follower with a Single Sensor

6B.1 Assignment: a Line-Follower with a Single Sensor

 You are going to make a program that reads the left sensor every time

a behavior is called. If this sensor has a higher value than that of

black, the robot moves to the right, but if it detects black it moves to

the left. This will make the robot zigzag on the border of the black

line. As we are using the left sensor, the robot will follow the line on

the left side (as shown in figure 7).

 We will be using the calibration data measured in assignment 6A.

Fig 8: Line-Follower
with One Sensor

RLT2-v4.3 Robotics 25

6b.1 A Line-Follower with a Single Sensor

1

Load program 6B – Line Follower and save it as 6B.1 –

Line Follower. If you completed assignment 6A, start with

6A.2.

2

We are going to transform RobotDrive into a line-follower.

Select the RobotDrive in the flow code from the Project

Browser in the upper right-hand corner and press the

right mouse button. Rename it as LineFollower. Make

sure you save the program first since renaming is only

allowed on programs that have been saved to disk. Now,

drag LineFollower to the FlowCodeSheet.

3

As described in the assignment, the robot needs to move

away from the line if the sensor detects Black and

towards it when it detects Green. So, we need to modify

and expand the program. First, we have to insert a loop

that will allow the robot to follow the line for a set time.

4

We must make the robot turn right until the color of the

field changes. Then, the robot must turn left until the field

color changes again. All we need to do is specify which

colors these are with the WaitForMatch icon.

5

To perform the comparison, we use the calibrated colors

and therefore change the percentages values to the Black

and Green variables.

6

Be sure that the robot’s starting program is the Main

program so that it calls Calibrate first and then starts the

line-follower program. Save your program and start it in

the simulator.

9

It seems to work, but the program stops almost

immediately. This is because the LineFollower is using

the default time of 0.5 sec in the LoopTimer. We will

change this in the next assignment.

Tuning the Line-Follower

If the robot does not have enough time to detect the black line, it will miss

it, ending up on the wrong side of it. So, make sure that the line is wide

enough and that the robot is not moving too fast. This will also happen if

the frequency with which behavior is called is too low. If the Sense-

Reason-Act loop has a lot of work to do, the call frequency will get lower

and the program will become slower. This will not happen in our examples,

but as a program grows larger this risk increases.

If the robot is driving too fast, the black line will only be visible for a short

time before the robot passes over it. So, experiment a little with your

program to see if the robot works reliably.

RLT2-v4.3 Robotics 26

Fig 9: Measurements of the Light Sensor

Moreover, there also is another phenomenon that we discussed earlier. If

the sensor reaches the border of the black line, it will detect both black

and green and return a value somewhere between these two colors. This

value can actually be used to make the robot react more quickly.

By making the value in your program slightly higher, you are actually

making the line a little wider (by including the transition between black

and green as part of the line). However, if you make this value too high, it

will start reacting to green, too. So it is important to find the best value.

In most cases, increasing the value by 3-5% is sufficient. You define this

correction factor in the Margin property.

6B.2 Assignment: Experimenting with Settings

You are going to make the robot follow the line by using one sensor. The

sharper the turns in the road are, the harder it will become for the robot

to follow its path. In addition, following a black line on a green background

is clearly more difficult than following a black line on a white background.

6B.2 Experimenting with Settings

1

Save your program as 6B.2 – Line Follower. The first

thing we will do is change the timing. You could just

change the time in the LoopTimer, but it is better to use a

parameter.

2

Change the time of the Delay variable in the LoopTimer.

Set its default value to 20 sec. You may use the time that

the line-follower continues to follow the line as a

parameter in the call from the Mainline. If you do not

change the value in the call, it will assume a standard

value of 20 seconds.

3

We can also change the speed and angle parameters.

The higher the speed, the larger the chance that the robot

will not follow sharp turns, so a larger value for the angle

will improve tracking on the turns. Change the settings of

all Driver icons into variables.

RLT2-v4.3 Robotics 27

4

If you have modified the Speed and Steering and given

the variables a default value, save your program and try it

out.

Please note that the parameter values in Main are not

automatically updated with the new defaults. So check

that their values are correct.

5

After 20 seconds, the robot will stop following the black

line, as indicated.

6B.3 Assignment: Testing on the Robot

Experiment with the various settings. Check how you can make the robot

move faster. Watch what happens if you set the Steering to a higher or a

lower value. Try to make the robot follow the entire track. Also try this

out on the Rescue field.

Driving on the Other Side of the Line

If you put the robot on the other side of the line, you will find that the

line-follower no longer works.

6C.1 Assignment: What Needs to be Changed?

 Start the simulator with program 6B.2

 Put your robot on the right-hand side of the line

 Try your line-follower

 On that side of the line, the robot does not work

 Find out why

 Change your program to follow the line on the right-hand side

 Make another change to your program so that the green led is lit when

the robot detects green and the blue led is lit when the it detects the

black line. This is not very easy to do with the current program,

because a WaitForMatch icon is being used. So, change the program to

use a BranchOn. This is a rather significant change to the logic of your

program.

6.6 In Practice

In large warehouses and container terminals, goods and/or containers are

transported by autonomous robots. One of the ways in which this is done is

to install a metal guide wire in the ground. The robot sensors detect this

wire and follow it. If there is an some obstacle on the way, the robot

needs to know how to avoid it.

Figuur 76: rescueveld.

RLT2-v4.3 Robotics 28

Fig 10: Automatic Guided Robots. Source:
http://www.wampfler.com/index.asp?id=75&e1=11&e2

=31&kgref=127&lang=E

6.7 Test

1. Suppose you read the following sensor values on your robot: Black 200,

Green 280, Yellow 420. Explain what values you will use in the line-

follower flowcode for the color black.

2. What is wrong in FlowCode 4?

 FlowCode 4

3. What will happen if you do not change this?

4. Under what conditions can something go wrong with a line-follower?

5. What can you do to resolve this?

RLT2-v4.3 Robotics 29

7. Actuators: the ‘Act’ Phase

In this chapter, you will be developing most of the code on your own. The

robot can follow a line with its sensor, but the zigzag behavior slows it

down. The motors need to be controlled in a better way to increase the

robots speed and improve its ability to follow the track.

So, we have to improve the “cooperation” between the Reason and the Act

phases. We are going to make the line-follower a bit more complex and use

two sensors. In addition, we are going to make the line-follower behavior

more flexible.

7.1 You will learn

 what type of actuators exist

 how actuators are controlled by information from the reason phase

7.2 You will need

 a NXT robot

 a computer with RoboPAL

 the rescue field

 the Line-Follower program

7.3 You will experiment with

 controlling motors based on data from the reflection sensors

 using a line-follower with two reflection sensors

Type # Assignment Description

 7A LineFollower A faster line follower

 7A.1 LineFollower A line follower with two sensors

 7A.2 Experiment Testing in the simulator and on the NXT

 7B LineFollower Following the black line

 7B.1 LineFollower Following the line using a subroutine

 7B.2 Testing Following the black road

 7C LineFollower Following the yellow road

 7C.1 LineFollower Following the yellow road

 7C.2 Testing Testing YellowLineFollower

 7C.3 Testing Following the rest of the trajectory

 7D Exam Exam on chapters 6 & 7

RLT2-v4.3 Robotics 30

Fig 12: BioLoid Robot
Source:http://www.robotis.com

7.4 After Completing This Chapter, you will be able

 to explain how a line-follower with two sensors works

 to use information from the sensors to control the motors

 to explain why a line-follower with two sensors makes the robot move

faster

7.5 Explanation

The Sense-Reason-Act Loop

Living organisms continually collect information. First, the Sense step takes

place, then information is processed (the Reason step) and this results in a

meaningful action (the Act step).

Fig 11 Sense, Reason, Act Loop

Robots process information from their environment and then control one or

more actuators. In this chapter, we will see how actuators are controlled

during the Act step.

Actuators are the parts of a robot that take care of movement. They

usually are electric motors; other types include pneumatic or hydraulic

actuators, linear motors, memory shape alloy artificial muscles, etc. The

Lego NXT only uses electric motors.

Servomotors

Servomotors are often used in simple robots, because they

are inexpensive and all the mechanic and electronic parts

are nicely integrated into a single standard package. They

are often used to control the steering of model boats,

airplanes and cars.

In a walking robot, they are used as a joint to move the arms

and legs.

On the NXT, small motors are used to power the wheels. The

motors of the NXT can both be used as standard motors or as

a servomotor. The difference between a servomotor and a

standard motor is that if you use a servomotor you will need

to specify the position of the motor shaft to control steering.

Without a servo mechanism, the motor just turns and you

will have to count how long it is turning to make it reach a

certain position. This becomes very inaccurate as a result of slippage and

braking.

RLT2-v4.3 Robotics 31

Fig 13: Motors Mounted in Mirror
Image

A servo mechanism actually measures the position of the shaft and a

feedback mechanism allows the motor to stop automatically when the

required position is reached. This feedback mechanism makes the motor

turn faster at the beginning and slow down as the desired position is about

to be reached. This prevents the motor from overshooting the desired

position due to high speed.

This is a very different way of using a motor than that we do with our

robot. A servo mechanism is more useful, for instance, to steer a model

car as you want the front wheels to be put precisely in a preset position.

The motor in such a servo has a high rotational speed to obtain a large

torque and enough power to move the shaft. And this is exactly what we

want to achieve with the driving motors of the robot: sufficient power to

move the robot, but with the possibility of changing the speed and

direction of rotation of the wheels. So, we sometimes use modified servo

motors in which the feedback is “misused” to control the rotational

direction and speed of a motor. You can instruct the program to use the

motors of the NXT in both ways.

Rotational Direction of the Motors

Our robot has two motors. As they are mounted on either

side of the robot, we obtain a “wheelchair” effect that

is usually referred to as a ‘differential drive’.

Unfortunately, this name causes some confusion with the

‘differential’ used in automobiles.

The advantage of a wheelchair drive is that the robot can

rotate on its own axis, making it rather agile. Also, sharp

turns can be negotiated without a complicated steering

mechanism such as that used in cars.

As the robot is powered by two motors that are mounted

in a “mirror image,” one motor must spin forward and

the other in reverse to make the robot move forward. Clearly, this may

cause some confusion. RoboPAL is preset to take care of this and avoid

confusion with the Driver icons. You have already encountered the driver

functions in previous chapters.

Adaptive Behavior

To make the robot move forward, we use the Driver icons that have a

predefined motor speed: 100 means full speed ahead, -100 (minus) means

full speed backward and 0 means stand still.

However, these easy-to-use motors have a disadvantage. They are never

exactly equal, which means they do not rotate at exactly the same speed.

Thus, when both motors are given the same speed command, the robot will

not actually drive forward in a straight line.

RLT2-v4.3 Robotics 32

If a robot uses its sensors to move forward in a straight line, this does not

pose a problem. It will use its sensors to determine where to go and

automatically compensate for small differences in its motors. We will

frequently encounter this kind of feedback mechanism. Feedback is one of

the most important properties of autonomous (independent) robots. We

call this adaptive (self-changing) behavior. The third part of the Robotics

module is entirely dedicated to this behavior and contains a number of

assignments to become acquainted with it.

What is interesting, in this case, is the difference in behaviors resulting

from the intrinsic and extrinsic environment. The intrinsic environment,

for instance, includes differences between motors, motor temperature and

battery level, as well as sensor readings of the internal state of the robot.

In humans, we call this proprioception or the ability to experience the

position of one’s own body parts (i.e., knowing the position of your arm or

leg).

The extrinsic environment includes obstacles, color differences on the

surface and the temperature of the environment. So, anything that can be

detected with sensors outside of the robot. In humans, we call this ability

to detect external stimuli through our senses exteroception.

The LCD screen of your robot can be used to tell something about the

intrinsic state of the robot. A led for instance can be used to indicate the

battery power level. Another example is the so-called heartbeat-led that

indicates that the robot is ‘alive’.

Leds as Indicators

Leds are really not actuators, but indicators. They kind of fit in with the

Act-part, because they deliver a form of output.

It is useful to know that your robot sensors detect something as dark. You

can use one of the leds for this or display a short message on the screen.

The Assignment

A Line-Follower with Two Sensors

A line-follower with a single sensor is easy to program, but it is not very

fast. The robot is slow because it has to make small zigzag movements to

follow the edge of the line and must therefore limit its speed to not

overshoot the line. Moreover, the robot cannot distinguish between leaving

the line on the left or the right side and therefore has to stay on one side

of the line.

By using two sensors, we can limit this zigzag behavior. This is clearly

visible when following a straight line. The robot moves in a straight line

until one of its sensors detects the line. The correction of the motor speed

and decision of which motor to slow down will depend on which sensor

detects the black line. This makes the robot move much faster than if it

only uses one sensor.

Fig 14: linefollower
with two sensors

RLT2-v4.3 Robotics 33

7A.1 A Line-Follower with Two Sensors

1

Open 7A – Fast Line Follower and save it as 7A.1, then

open the LineFollower FlowCodeSheet. We will modify

the program to use two sensors. Start by creating two

local variables - Speed and Steering - both with a default

value of 60 (int).

2

We have to read the values of the right and left sensors.

As we saw earlier, we should have stored the comparison

value in the calibration process. So far, we have only

used the left sensor. So, first change the calibration so

that both sensors are read and their values stored in the

variables BlackL and BlackR. We will change the other

colors later on.

2

In this case, we read the sensor values in LineFollower

with the BranchNotOn icon. This allows us to put the

action underneath the icon and keep the program

readable (so we use the inverted version of BranchOn).

Start by reading both sensors and using the BlackL and

BlackR global variables from calibration.

3

You will see that if the left sensor does NOT detect the

black line, the program checks for the black line with the

right sensor. If the right sensor also does not detect it, the

robot continues to drive straight ahead. Add this to the

program.

We are using Speed as a variable, while Steering should

be 0 to drive straight ahead.

4

If the robot detects the line with its right sensor, it should

turn right; when it detects the line with its left sensor, it

should turn left. This can be added easily.

We also use local variables for Speed and Steering to

specify how sharp the turn away from the line must be

and the Speed at which it acts.

Now, we must connect these three wires into the loop.

5

Use the Merge4 to do this. Note that one wire will remain

unconnected. Connect the exit of Merge4 to the merge at

the beginning to complete the loop. As the loop never

ends, there is no Finish icon. It also means that the robot

will not stop and you will have to switch it off by using the

reset button.

6

Try the program out in the simulator and then on the

Rescue field with the NXT. You will find that the robot

loses the line at the first sharp turn. We will deal with this

later on.

RLT2-v4.3 Robotics 34

Fig 15: Rescue Field

Figuur 76: rescueveld.

7A.2 Assignment: Testing in the Simulator and on the NXT

 Notice that the robot misses a turn once

in a while. You could lower the speed, of

course, but the real goal is to make the

robot react as quickly as possible. So,

you will need to make more changes to

your program.

 These improvements will not be treated

separately. You will have to discover

what to do on your own. A hint: by

changing the turning angle of the robot

the turns can be negotiated much

better.

Following the Road by Using a Stop Condition

After following the first part of the road, there is a yellow road that can be

used as a shortcut. First, the robot needs to find the yellow road and then

react to this different color.

We saw earlier how using a subroutine can make a program easier to

understand. A subroutine can take care of following the line as well as

adapting to the color change.

While following the black road we look for values that are lower than the

surrounding green field, but with the yellow road we need to check for

values that are higher than green.

Although these two steps could be combined into a single subroutine, it is

much simpler to make two separate ones. Moreover, we also want to

include a stop condition to indicate when the line-follower has reached the

end of its trajectory (i.e., with the black road it is the yellow area and

with the yellow road it is the black area). Either may be on the left or on

the right, so we must use separate values. The code for this is shown in

FlowCode 5.

Note that Speed and Steering are passed as parameters, but a Time

parameter is also used to define how long the line-follower must move

forward. This means that if the robot misses the stop condition, the timer

will make sure it stops after a set period. The color of the stop condition is

defined in the subroutine itself.

RLT2-v4.3 Robotics 35

Flowcode 5

This part of the assignment requires further insight, because you have to

develop the code on your own. The idea is to create a new subroutine

called YellowLineFollower. You can create it by using the example above.

You also have to modify the LineFollower for the black line so that it has a

stop condition, but also stops if it detects the yellow line. Finally, you also

have to change the calibration routine to register the color yellow.

To help you along, we will explain what needs to be changed in your

program.

 First, you must make sure that the line-follower has a stop condition.

You do this by including a third Branch command, but this time a

BranchOn that tests if the left sensor detects yellow. For the yellow

line-follower, the right sensor must test for black.

 If this is NOT the case (lower exit), the robot must continue to drive

straight ahead as in the previous version. If it DOES see yellow, the

robot should stop and sound a beep.

 We also want the robot to stop after a while as it might miss the

yellow line. You do this by including a LoopTimer in the loop that gets

its value from the Time parameter. As soon as that amount of time

expires, the program will automatically stop. This gives the line-

follower two stop conditions, one of which it will always react to.

The following assignments look at how to fit all of this into your program.

7B.1 Assignment: Following the Line by Using a Subroutine

 Load program 7B – Yellow Line Follower and save it as 7B.1 – Yellow

Line Follower.

 Complete the black line-follower by including two stop conditions.

 Make sure that the black line-follower is called from the mainline and

the calibration is updated.

 Make sure your program follows the black line and stops when it

detects the yellow line.

 The framework of the code is shown in FlowCode 5

RLT2-v4.3 Robotics 36

Following the Black Road

Finish the program so that the robot can follow the black line. Make sure

that the robot stops when it detects the yellow line. Test this part well,

because you will be using the black line-follower throughout the rest of the

mission. It is important that you make sure the line-follower reacts

properly to both stop conditions. During testing, temporarily set the timer

to a lower value, so that you can check if it stops before detecting the

yellow road.

7B.2 Assignment: Following the Black Road

 Test LineFollower with the simulator and check that the robot stops at

the yellow line. If this works fine, test it on the NXT.

 Check that your robot stops before reaching the yellow line, if you

decrease the time value. You will need this later.

 Use different tones to find out where and when the line-follower stops.

Following the Yellow Road

The goal is for the robot to start following the yellow line as soon as it is

detected. To follow the yellow line, the sensors need to detect yellow. So

this means modifying the calibration so that both sensors can detect the

value for yellow and including the YellowL and YellowR variables in your

program. The stop conditions also have to be changed, because this line-

follower must stop on black.

After having followed the yellow line, the robot must continue following

the black line again in the proper direction. This can be improved by

lowering the speed after the straight part of the road, just before the

sharp turns. You will have to count how long the robot can move at high

speed and then modify the behavior of the line-follower.

Problem: after the robot detects the yellow line and starts following it, it

must stop following it as soon as it detects the black line again. The field is

designed so that the robot still detects the black line at the beginning of

the yellow line. This makes the robot think, erroneously, that it has

already reached the end of the yellow line.

Make sure that the robot does not interpret this first part of the black line

as a stop condition.

7C.1 Assignment: Following the Yellow Road

 Save your program as 7C.1 – Yellow LineFollower

 Make a copy of the black line-follower and call it YellowLineFollower.

 Make the necessary color and stop condition changes to

YellowLineFollower.

 Make the necessary changes to the calibration subroutine, so that it

can detect yellow with both sensors.

 Call the subroutine YellowLineFollower from the Main program.

RLT2-v4.3 Robotics 37

 Make sure that the stop condition for the end of the yellow line is

detected properly. (The problem described above occurs when you are

following the yellow line.)

 Use beeps and maybe leds or a message to help you follow what

happens.

 Complete the code and check that it all looks OK.

7C.2 Assignment: Test YellowLineFollower

Test YellowLineFollower in the simulator and check that the robot stops at

the black line after following the yellow line. If this works fine, test it on

the NXT.

The Rest of the Trajectory

Finish the program, so that your robot is able to follow the rest of the

trajectory. The first part after the yellow line can be followed at high

speed. Then, count how long the robot takes to reach the next turn, just

before the sharp turns begin. At that point, make sure that the black line-

follower slows down, so that it can follow the turns.

Especially in the final part, it is hard to keep the robot on the track. In

fact, it may be easier to just use a single sensor for this final part.

This is the final assignment for the second part. It serves to find out how

much you have learned from these lessons on robotics.

Show how well your robot can follow the trajectory. When grading your

work, your teacher will check both how your program was built and what it

does. The faster the robot follows the road, the better you have succeeded

in completing the mission.

7C.3 Assignment: Following the Rest of the Trajectory

 Save your program as 7C.3 – Rescue Line Follower.

 Complete the program so that it follows the rest of the trajectory.

 Test Rescue Line Follower in the simulator and check that the robot

detects the end of the yellow line properly.

 Make sure the robot can follow the first part of the black line at high

speed.

 Slow down the robot so that it can negotiate the sharp turns.

 Increase the Steering here; if this does not work, try a line-follower

with a single sensor.

 Make sure the robot stops when it reaches the yellow swamp.

 Test the program on the rescue field, too.

RLT2-v4.3 Robotics 38

7.6 In Practice: the RoboCup Competition

If you have finished the program and it works correctly, you can move on

to finding the can in the swamp and having the robot push it out. If you

can do this, you might just be ready to participate in the RoboCup Junior

Competition, which is held annually in Rome (March/April). More details

are available at www.mondodigitale.it.

You can participate in these competitions with your Lego robot, but you

will have to design your own robot. You cannot use the example robot that

was built for these lessons. You can find additional educational material at

the same website. Check if the competitions in Rome also include the

green Rescue field we used in this course. In international competitions

usually a more complicated field is used on which a black line on a white

floor is used, but with corridors where no lines are present. There you may

have to follow the wall instead of the line.

Exam 7D: Exam on chapters 6 & 7

These three chapters end with a written exam.

7.7 Test

1. What is the difference between a servomotor and a standard electrical

motor?

2. Why is a line-follower with two sensors faster ?

3. Which three variables determine the behavior of a line-follower?

4. What happens when both sensors see the black line at the same time?

5. Could this really happen and, if it does, what can be done about it?

6. Why do we have a stop condition in the line-follower?

http://www.mondodigitale.it/

RLT2-v4.3 Robotics 39

Intro Part 3

In the third part of the RLT Robotics Module, we will explain Adaptive

Behavior. This part is much more difficult than the previous two and is

more suitable for older students or in information technology lessons. Part

3 addresses the Sense-Reason-Act loop in much greater detail and also

explains the use of State Machines.

We will look at the behavior of a (very) simple organism and try to copy

flee behavior and curious behavior or just let it drive around at random.

We will be using a State Diagram, that looks like this:

The diagram indicates under what conditions the robot becomes scared or

curious and what behavior it should exhibit for each State. The three boxes

on the right are the Behaviors that the robot will execute and that

autonomously determine when their task has been completed.

These lessons also draw a parallel to the biological aspects of behavior and

illustrate the initial principles of the Artificial Intelligence used in the field

of Robotics.

Fast Movement

Slow Movement

To Robot

From Robot

Flee

Inspect

Wander

Afraid

Curious

Neutral

