
RLT-v4.3 Robotics 1 

 

 

Robotics 3 

 

RLT Robotics Learning Track 
 

Module for Level 2 

Version 4.3 – Sept 2012 



RLT-v4.3 Robotics 2 

Colophon 

This Robotics module is part of the RoboDidactics Robotics Learning Track 

(RLT). The material presented in this module is based on the Dutch 

Robotics material developed by the author for the SLO Certified Robotics 

Module. 

 

All the original and associated material for the RoboDidactics Learning 

Track may be downloaded from the Phyrtual site or from the RoboPal for 

NXT site at www.virtualbreadboard.com. It can also be found in the English 

download section of www.robocupjunior.nl. Teachers are permitted to 

modify this material for use in their own lessons, provided these changes 

are reported in the colophon of the modified material. The Phyrtual site 

can be reached through www.phyrtual.org. 

 

This module was developed and translated by the author (Peter van Lith) 

as part of a cooperation agreement with the Fondazione Mondo Digitale in 

Rome, Italy in 2010. The RoboPAL software used in this version has been 

developed with VirtualBreadBoard by James Caska. 

   

This version is developed for use with the Lego MindStorms NXT and 

RoboPAL software. A more extensive version is available (currently only 

in Dutch). It is based on robots that can be programmed in Java, using 

the Java Simulator and Eclipse.  

This NXT version is easy to use because it uses a graphical programming 

language. 

The module consists of three parts. The first is the basic version needed 

for all further lessons. The second part deals with the RoboCup Junior 

Rescue challenge. The more demanding third part is optional and deals 

with a simple simulated organism, based on reactive behaviour. 

 
Modified versions of this module may only be distributed if this colophon 

states that it is a modified version, including the name of the author of the 

modifications. 

 

© 2010/12. Version 4.3 

 

The copyright of this module rests with RoboCup Junior Netherlands that is 

the owner under the terms of the creative commons license as mentioned 

below. 

 

The authors of this module have used material from third parties during its 

development and have received permission to use this material. During 

http://www.virtualbreadboard.com/
http://www.robocupjunior.nl/
http://www.phyrtual.org/


RLT-v4.3 Robotics 3 

research into the rights of text and illustrations, we have acted carefully. 

Should, however, any person or organization deem to have rights to parts 

of the text or illustrations, they are advised to contact RoboCup Junior 

Netherlands (info@robocupjunior.nl). 

 

This module has been compiled with care and has been tested extensively 

by the authors and several test schools. The authors accept no 

responsibility for incorrect or incomplete parts of this module, nor do they 

accept any claims for damages as a result of using this module or its 

associated software. 

 

This module is distributed under the Creative Commons License 3.0, 

Netherlands.   

►http://creativecommons.org/licenses/by-nc-sa/3.0/nl  

http://creativecommons.org/licenses/by-nc-sa/2.5/nl


RLT-v4.3 Robotics 4 

Contents 

COLOPHON ...................................................................................................................................................... 2 

CONTENTS ........................................................................................................................................................ 2 

INTRODUCTION ................................................................................................................................................ 5 

8. ADAPTIVE BEHAVIOUR ............................................................................................................................. 6 

THE SENSE-REASON-ACT LOOP .................................................................................................................................. 7 
SENSES VERSUS SENSORS .......................................................................................................................................... 7 
DRIVING AROUND AT RANDOM ................................................................................................................................ 14 

9. ADVANCED SENSORS .............................................................................................................................. 18 

REACTING TO FAST AND SLOW MOVEMENTS .............................................................................................................. 19 
DETECTING MOVEMENT ......................................................................................................................................... 19 
USING THRESHOLD VALUES ..................................................................................................................................... 19 
MAKING THE ROBOT REACT - CURIOUS ...................................................................................................................... 23 
MAKING THE ROBOT REACT - SCARED ....................................................................................................................... 24 
SCARING THE ROBOT .............................................................................................................................................. 25 

10. CONTROL SYSTEMS ............................................................................................................................... 28 

 

 

 

 

 

 

 

 

 

 

 

 



RLT-v4.3 Robotics 5 

Introduction 

Intro Parts 1 and 2       

The RLT Robotics module consists of three parts that can be followed 

independently. In the first part, the emphasis is on learning about the 

robot, its development environment and how to program it with RoboPAL. 

The first part is intended for higher middle grade school and lower science 

education classes. 

 

The second part focuses on the RoboCupJunior Rescue mission in which a 

dangerous container has to be removed from a swamp area in the Rescue 

Field. This part concentrates on simple programs and is useful for schools 

that want to participate in robotics competitions such as RoboCup Junior 

and the First Lego League. 

Intro Part 3         

In the third part of the RLT Robotics module, we address what is known as 

Adaptive Behavior. This is the most difficult of the three parts. It includes 

a detailed explanation of the Sense-Reason-Act loop and information on 

the use of State Machines. We will copy the behavior of a (very) simple 

organism and program the robot to exhibit scared, curious and random 

behavior. 

 

These three parts have been organised so that students may follow Parts 1 

and 2 or Part 1 followed by Part 3. This final part is the most complicated 

and more suitable for a theoretical education. Part 2 (Chapters 5-7) is not 

superfluous and indeed provides a good basis for the material in Part 3. If 

you have sufficient time, of course, you could follow all three parts. 

 



RLT-v4.3 Robotics 6 

8. Adaptive Behaviour 

We are going to make the robot more reactive to its environment. This is 

called adaptive behaviour. Instead of pre-programmed behaviour, the 

robot will change its behaviour based on the circumstances it encounters. 

We will also introduce a new concept: States.  

States are used to determine the situation of the robot. This requires a 

structure that we will first present in a schematic manner as a state 

diagram. Subsequently, we will develop the state diagram into what is 

called “an architecture.” This is a structure into which the program parts 

are embedded step by step. 

We will also see how the robot can use the information from its sensors to 

become scared or curious. In addition, we will also see how we can make a 

robot exhibit random behavior, so that it does not repeat the same 

movements cyclically, but just wanders about without any fixed pattern. 

8.1 You will learn how to 

 program adaptive behaviour 

 use random numbers 

 program a robot to become scared, curious or indifferent 

8.2 You will need 

 a NXT robot 

 a computer with RoboPAL 

 a Grid field 

 the CuriousBehavior and FleeBehavior programs 

8.3 You will experiment with 

 copying small parts of the behavior of an ant 

 modifying FleeBehavior and CuriousBehavior  

 distinguishing between behaviors and states 

8.4 After completing this chapter, you will be able 

 to read and interpret a simple state diagram 

 to use dummy routines 

 to explain when random numbers are useful  

 

 

 

 



RLT-v4.3 Robotics 7 

 

Type # Assignment Description 
 8A AdaptiveBehavior State Diagram 

 8A.1 Study Studying the state diagram  

 8B AdaptiveBehavior Architecture 

 8B.1 Code modification Setting up an architecture for adaptive behavior 

 8B.2 Code modification Entering the act function 

 8C WanderBehavior Using a dummy routine 

 8C.1 WanderBehavior Testing the WanderBehavior dummy routine 

 8D WanderBehavior Random behavior 

 8D.1 Code modification Driving around; random numbers. 

8.5 Explanation 

First, we will refresh our memory by reviewing part of the introduction to 

the Sense-Reason-Act loop that was presented in the chapters 5-7.  

The Sense-Reason-Act Loop 

Three logical steps are used to control robots. You will find these same 

steps in the behavior of animals and possibly in humans, too. First, we 

observe things with our senses: the Sense step. Then, we decide what to 

do with this information: the Reason (or thinking) step. Finally, we take an 

action: the Act step.  

 

 

 

 

 

 

 

 
Fig 1: Sense-Reason-Act Loop 

 
Robots use their sensors to collect information on their environment. In 

this chapter, you will see how a robot uses this information in the Sense 

step. 

Senses versus Sensors 

By observing the environment with its sensors, a robot can adapt to the 

circumstances around it and operate more flexibly to reach its goal. 

Living organisms, whether they are single-celled or human beings observe 

their environment through their senses. Robots are equipped with sensors 

for the very same purpose. There are a large variety of sensors, but in 

general they perform the same function as the senses of a human being or 

animal.  

Some sensors, like infrared or Röntgen rays, even detect information that 

we cannot perceive with our senses. Most sensors, however, are more 



RLT-v4.3 Robotics 8 

limited. Indeed, we sometimes need to use several different sensors just 

to match the operation of one of our senses. 

We are so familiar with our senses that we often assume that sensors on a 

robot work in an identical manner, but this is often not true. The 

processing of raw data by a sound sensor, for instance, may lead to very 

different conclusions than those reached by people using their ears. In 

addition, our experiences are highly influenced by the associations our 

brains make with these observations (i.e., optical illusions). 

 

Moreover, two sensors with the same function may provide different 

results due to small differences in their manufacturing process. These 

differences make it necessary to match sensors. We do this on the basis of 

a standard reference value. The process is called tuning.  

When, for example, a sensor is tuned to represent raw data values on a 

scale from 0 to 100, we call this process calibration. The process of 

adapting the non-linear behavior of a sensor to linear behavior is also 

called calibration. Calibration makes it a lot simpler to compare the values 

of different sensors. 

 

In this chapter, we will address the idea of adaptive behavior in greater 

detail. We will re-develop FleeBehavior and CuriousBehavior in a different 

and more extensive manner, so that your robot reacts to its environment. 

As a result, the robot will exhibit a more interesting behavior. This is a 

complex subject, so we will analyse it step by step. The best approach is 

to develop and test each piece of code separately on the simulator. If an 

error occurs, resolve the problem before moving on.  

You will also have to make your own backup copies, preferably before 

every major step. 

State Diagram (Scared, Curious and Neutral) 

Adaptive Behavior 

Earlier, we saw that adaptive behavior is a simple way of making an 

organism or a machine react to its environment. 

If you tease an ant with a stick, it may decide to deviate from its path to 

avoid the obstacle. This is an example of adaptive behavior: the ant leaves 

its trail to move away from the stick. 

The ant modifies its behavior according to the situation. You can also 

program a robot to behave like this. A robot may find itself in different 

states. In order to make a robot adapt to its environment, we first need to 

create a state diagram and then develop a program with a so-called state-

machine. 

 

 



RLT-v4.3 Robotics 9 

State Diagram 

What kind of situation could scare a robot?  A large object headed directly 

towards it or something coming at it at high speed, or both. 

In such a situation, a robot may choose to flee. In other cases, it may 

choose to explore its environment or even to chase the object. If, on the 

other hand, nothing happens around it, the robot may choose to start 

driving around randomly. 

 8A.1 Assignment: Studying the State Diagram 

Look at the following state diagram: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig 2: State Diagram 

 
The behaviour delineated by the state diagram includes the following 

steps: 

 As long as there are no stimuli, the robot remains neutral and drives 

around, waiting for something to happen. 

 If something comes towards the robot, it gets scared and flees. 

 If it detects a slow movement or if something moves away, it becomes 

curious and chases it. 

 
Clearly, the behaviour of an ant is much more complex, because ants can 

detect odours, sounds and vibrations. Moreover, the transition from bright 

to dark lighting and the size of an object may also play a role. 

In order to mimic this behaviour, you will have to modify the 

CuriousBehavior program so that the robot autonomously determines 

whether it should be scared or curious. According to the state diagram 

shown above, the robot should be able to determine if something is moving 

fast or slow and whether it is coming towards or moving away from it. 

Depending on the possible combinations, the state of the robot will be 

scared, curious or neutral. This, in turn, will determine whether the robot 

flees, moves towards the object or just moves about (seemingly 

uninterested or maybe quite alert).  

Fast Movement 

Slow Movement 

To Robot 

From Robot 

Flee 

Inspect 

Wander 

Afraid 

Curious 

Neutral 



RLT-v4.3 Robotics 10 

 

These are different behaviours and situations that can be developed based 

on the following elements: 

 is something moving fast or slow? 

 in what direction?  

 the state of the robot 

 the robot must flee, become curious or neither 

 the robot must drive around  

Architecture - Infrastructure 

We are going to program several actions, so we will first need to build a 

structure (sort of like scaffolding) on which to place the various possible 

actions. This type of construction is called an infrastructure and its design 

is called its architecture. When developing computer software, the design 

of the architecture is always one of the most important steps. 

As our architecture will be identical to that planned in the state diagram 

(fig. 3), we only need to concentrate on how to develop it. 

8B.1 Assignment: Setting up an Architecture for Adaptive Behavior  

 Load version 8B (which is a copy of FleeBehavior) and call it 8B.1 – 

Adaptive Behavior. 

 Open the Main program and select all the icons. Then select Edit | 

Copy. 

 Make three new FlowCodeSheets and call them FleeBehavior, 

CuriousBehavior and WanderBehavior. We will not add anything else 

for the moment. Make sure that the Start and Finish icons are 

connected; otherwise, the program will not work. 

 Now, insert a copy of the three text boxes from FlowCode 1 in each of 

these new FlowCodeSheets by using the Edit | Paste command. You 

now have three identical subroutines that do not do anything useful, 

yet. 

 Insert a loop in the Main routine as shown in FlowCode 1. 

 

 
FlowCode 1: the Sense-Reason-Act Main Loop 

 



RLT-v4.3 Robotics 11 

This program does not do anything yet, but it forms the basic architecture 

onto which we will develop functionality, step by step. Use different 

colours to identify the Sense, Reason and Act steps. 

Also note that the Sense-Reason-Act Loop contains a four-way merge icon 

that we will later need to connect to various subroutines. 

8B.2 Assignment: Making the Act Function 

 Call your program 8B.2  

 Insert the instructions shown below into the Reason and Act parts. 

 Now, you can start testing your program. Follow the instructions 

provided below. 

 

 
FlowCode 2: Basic Setup for Act 
 

We will start with the construction of the Sense-Reason-Act functions. The 

first two icons test at what distance a ball can be detected. On the basis of 

this result, we will determine what the robot must do or - in other words - 

its State. The program then determines the state and calls the 

corresponding behaviour. We explain what is happening below. 

 

8B.2 Entering the Act Function 

1 

 

Call your program 8B.2 and include two new icons. 

The first is a BranchIfLower icon that uses the Distance 

sensor. If its value is lower than 50%, it means that the ball 

is far away and the robot will continue to search for it. 

The second icon is a BranchIfHigher icon that checks to 

see if the ball is near. If it is, the robot must get scared.  

If both these conditions are false, then the robot sees the 

ball and must become curious. We must make sure the 

robot actually does something and reveals its State. 



RLT-v4.3 Robotics 12 

2 

 

Let’s agree to use the following LED icons: Blue for Search, 
Yellow for Scared and Green for Curious. 

Insert an LCDDebugMessage icon after the LED icon and a 

third text variable for Search, Scared and Curious.  

3 

 

Depending on its State, the robot will need to call the 

corresponding subroutine. Insert Subroutine icons for  

WanderBehavior, FleeBehavior and CuriousBehavior into 

your program and give them the same colour as the 

corresponding LED. 

4 

 
 

Now, you can start testing your program. Start the program 
in the simulator and use the mouse to move the ball 
towards the robot. Look at the message that appears on 
the LCD screen. 
Two things will go wrong: 
 

 First, the LEDs turn on, but they do not turn off again; 
at any given moment, they will all be on.  

 Second, the robot does not react properly to the 

ball. This is because the second test has set the 

distance to 100% by default. Use the simulator to 

find out at what value you want the robot to 

become scared. Insert this value in to your 

program and save it. 

5 

 

Now you need to turn off the LEDs. Insert a LED Driver 

icon in the loop, so that every time the loop starts, the leds 

turn off. 

Now, test your program again. If it works, we are ready to 

make our program do some real work. 

Using a Dummy Routine 

We have three subroutines, but they do not work yet. In order to test 

them, we have to make a subroutine to show that a given routine is 

operative without actually implementing its functionality. This type of 

subroutine is called a Dummy Subroutine. This helps us set up and test the 

control structure of a program. 

If we want to start WanderBehavior, the robot should start driving around 

at random. However, as we have not explained how to program a robot to 

exhibit random behavior, we will implement WanderBehavior as a Dummy 

subroutine that will show us what is happening by lighting a LED or 

sounding a beep (as we have seen before). Let’s try to make the Dummy 

routine a little more interesting. 

We are going to sound a short beep and turn on the yellow light and then 

turn it off again. Switching something on and off again is called a Toggle 

(like a toggle switch). An example of this dummy routine is shown in 

FlowCode 3. 

 



RLT-v4.3 Robotics 13 

 
FlowCode 3: Dummy Setup for WanderBehavior 

 

As we are introducing new concepts in this code, we will first give you a 

step-by-step explanation. 

8C.1 WanderBehavior Dummy Routine 

1 

 

Call your program 8C.1. Start by making a local variable 

called State for the internal state of WanderBehavior. This 

variable will not be used as a parameter, so we set the 

Parameter property to False. 

2 

 

As soon as WanderBehavior is called, the content of the 

State variable will be compared to the value zero via an 

IfThenBlock. If the value of State is zero, we know that this 

is the first time we have reached this point. A C note is 

sounded and the yellow light turns on. The comparison 

operator consists of two “equal” signs. 

3 

 

We must now make sure that when we reach this point the 

next time, something different happens. So, we change the 

contents of the State variable. We do this by using a 

FunctionBlock from Variables. 

4 

 

A FunctionBlock allows you to specify a number of 
elements.  

Insert the name of the variable that must be changed in 

Dest (Destination).  

In Function, use LET, which has one parameter: a value 

(val).  

Insert the value for State (in this case 1) in Param1.  

5 

 

The next time that the subroutine is run, we again check if 

State is zero. Now that this is no longer the case, the lower 

branch will be activated. We will hear an F note and the 

light will be turned off. Do this again with a LET function 

and set the value to zero this time. 

6 

 

This program makes the lamp turn on and off and 
alternates a C and an F note. However, as this may 
happen to quickly, you could delay the function by adding a 
stopwatch. 



RLT-v4.3 Robotics 14 

8C.1 Assignment: Testing the WanderBehavior Dummy Routine 

 Call your program 8C.1 - Adaptive Behavior.  

 Test the program with the simulator. Make sure you execute the Main 

part. 

 If you move the ball beyond the range of the sensor, the robot will 

enter the Search state and call WanderBehavior. This will turn the led 

on and off as long as the ball remains outside its range. If you bring the 

ball closer, this behavior will end. 

 If this works OK, move on to the next step in which WanderBehavior 

really lets the robot wander about. 

 Remember that if you are developing a complicated program, you can 

include a Dummy routine to test parts of a program that are not 

complete. The Dummy routine that you used here can be used in the 

following assignments as well. 

Driving Around at Random 

Now, we will begin adding parts step by step. We have a fair amount of 

code to change, so we will do it in small steps and test it after every 

change. If we do not do this gradually, it will become very difficult to find 

out where the mistakes are at a later stage. 

We will start with WanderBehavior and then add other elements in the 

following chapters. 

So far, we have used commands to keep a fixed speed for a fixed amount 

of time, but in order to drive around at random we have to continually 

change the speed, the duration and the direction of the robot’s 

movement. We do this by using a Random Number Generator (RNG). A 

random number is an arbitrary number. Every time the generator is called, 

it will return a different number. FlowCode 4 shows the final result of the 

steps listed below. 

 

 
FlowCode 4: Setup for WanderBehavior 

 

 



RLT-v4.3 Robotics 15 

8D.1 Assignment: Driving Around; Random Numbers 

 If you skipped step 8C start with 8B.2. Call your program 8D.1 - 

WanderBehavior. 

 Follow the steps listed below to complete the program. 

 Test the program in the simulator and watch the robot drive around. 

Change the random numbers so that it does not make completely 

“wild” movements in all directions and the behavior looks a little more 

natural. 

 This completes the first part of Adaptive Behavior. In the next chapter, 

we will let the robot become scared or curious by using its sensors. 

 

8D.1 Moving Around; Random Numbers 

1 

 

Call your program 8D.1 

 

2 

 

First, we need a number of local variables, none of which 

will be used as parameters. These variables are used to 

calculate random values for speed, steering and duration. 

Moreover, we will also need temporary fields. 

3 

 

These three variables are given a default value of 0 (as 

shown on the left). The Time variable is of the Time type, 

while the other two are Integers (Int). 

4 

 

Next, we have to make two variables to use as temporary 

fields. The first one is Distance (Level type). The second is 

a Counter to keep track of how long WanderBehavior has 

been active (Int type). 

5 

 

First, we check to see if something interesting is happening 

around the robot. We read the distance sensor and store 

the value in the Distance variable. The content of this 

variable is used to check if an object is near. You can 

change the reference distance value and make it larger or 

smaller. 

6 

 

If something is detected, the robot will head toward it and 

the program will return to Main. 

7 

 

If nothing is found, the robot will start moving around, 

looking for an object. To do this, we need a counter that will 

execute the search behavior a maximum of 50 times. This 

is a practical way of setting a time limit for a behavior that 

consists of a number of steps. You could of course also 

use a timer loop, but we want to show you various 

alternatives too. 

8 

 

As long as the counter value is less than 50 and the robot 

has not found anything, it will continue to look around. We 

do this by making the robot turn around on its axis and 

return the program to its beginning point to check if an 

object has been found. If nothing is found, this action will 

be repeated fifty times. By changing the reference 

comparison value of the counter, you can make the time 

longer or shorter. 



RLT-v4.3 Robotics 16 

8 

 

If the robot has not found anything, it must move to another 
point on the field to continue its search. In order to make 
the robot move around,  we need to generate random 
numbers (just like in the row of instructions that generate 
valued for Speed, Steering and Time). 

The counter starts at zero and the robot moves around to 

different points on the field and looks around itself 50 times. 

9 

 

To generate an arbitrary (random) number, use the function 

RND (min, max). The two fields (min and max) in brackets 

are the parameters that indicate the range of values in 

which the random number must fall. So, if we want a speed 

between 20 and 50, Steering between 60 left and 60 right 

and a time of 0.25 to 0.50 seconds, we need to insert these 

values in the relative parameters. 

10 

 

Use the FunctionBlock icon and select the function RND 

(min, max). Insert the minimum and maximum desired 

values in Param1 and Param2. 

11 

 

These values are then used in the two following driver 

icons. The values for Speed, Steering and Time are stored 

in these two icons. This will make the robot start moving for 

a short while and then return to the beginning of its routine. 

12 

 

WanderBehavior continues to look at different places on 

the field, until it has found an object. Connect all the 

components in the program with wires and test it. 

Staying within the Field Boundaries 

When robot looks for an object, if it does not find one, it will start moving 

around at random. A good randomizer will always make sure that there is a 

‘normal’ distribution of generated numbers. This also allows the robot to 

turn to the left more or less as much as it turns to the right. The practical 

result, however, is that the robot will probably drive off the field. 

To prevent this from happening, you can program the robot to make larger 

left turns and smaller right turns. This will increase its chance of staying 

on the field. Change the randomizer to allow this; see what happens. 

In the next chapter, we will show you a better way to keep your robot on 

the field by using its field sensors. 

8.6 In Practice 

Most animals exhibit adaptive behavior: not only do they react to their 

environment, but they also learn from their mistakes. Robots cannot do 

this yet. By using the techniques described in this chapter, robots can 

react to their environment in a more sophisticated manner. Nonetheless, 

this is still rather basic compared to what even the simplest animals can 

do. Until not very long ago, industrial robots could not adapt to situations 

at all. Recently, however, a lot of work has been accomplished to create 



RLT-v4.3 Robotics 17 

 

Fig 3: Industrial Robot Arm 

robot arms that use a camera or touch sensors to determine if something 

goes wrong. 

Learning behavior is still beyond the reach of 

these applications, but research continues to 

explore this possibility. We have robotic arms 

that can remember the movements they 

need to make (as long as someone first shows 

them what needs to be done). However, this 

is not considered a learning behavior. 

If we want robots to perform domestic 

duties, they will not only have to exhibit 

adaptive behavior, but also be able to learn. 

 

In laboratories all around the world, 

experimental robots are being developed 

that will soon be able to learn. In fact, the first prototypes are currently 

making their first appearance. 

8.7 Test 

1. What is the use of a state diagram? 

2. How clever is a robot? What kind of things will it not notice? 

3. What is the importance of an architecture? 

4. What is a randomizer? 

5. A randomizer generates the following sequence of numbers: 1, 3, 5, 7, 

1, 1, 1. Is this an example of a good randomizer? Explain why. 

 



RLT-v4.3 Robotics 18 

9. Advanced Sensors 

Sensors are fundamental to robots. They observe not only what happens 

around the robot, but also what happens inside it. The robot can do more 

with its sensors than just read sensor values. We will explain more about 

this in this chapter. We will see how to find out if something is coming 

towards the robot and how fast that object is moving. We will also see how 

to use sensors to detect obstacles and avoid them. 

9.1 You will learn 

 to use sensors to determine the direction and speed of an object 

 to use the distance sensor in a different way 

 something about sensor input ports 

9.2 You will need 

 a NXT robot 

 a PC with RoboPAL 

 a Grid field 

9.3 You will experiment with 

 making the robot react to movements 

 detecting and avoiding an obstacle 

 

Type # Assignment Description 
 9A Movement Detection Reacting to movements 

 9A.1 Movement Detection Detecting movements 

 9B Movement Detection Using the debugger 

 9B.1 Movement Detections Testing with the debugger 

 9C Flee and Curious Becoming scared or curious 

 9C.1 CuriousBehavior Acting curious 

 9C.2 FleeBehavior Flee behavior 

 9C.3 Testing Becoming scared 

 9D Movement Detection Scaring the robot 

 9D.1 Testing Scaring the robot 

 9E Test Written test on chapters 8 + 9 

9.4 After completing this chapter, you will be able 

 to explain the difference between intrinsic and extrinsic sensors and 

their functions 

 to use of various sensor properties 

 to make a robot modify its own behavior 



RLT-v4.3 Robotics 19 

9.5 Explanation 

Reacting to Fast and Slow Movements 

How is a robot capable of determining whether an object detected by its 

sensors is moving or standing still? To do this, a robot needs to take at 

least two distance measurements in succession and then compare the 

values. If there is a large difference between the readings, then the object 

is moving quickly (or the robot is). If the difference is small then the 

object (or the robot) is moving slowly. As soon as the robot notices 

something, it should stop wandering about and determine what action 

needs to be taken. 

Detecting Movement 

The sensor value is stored in a variable called Previous. In order to 

determine the distance that an object has moved, a second measurement 

must be taken (within a given time period) and stored as the variable 

Distance. These two values are then compared. 

If you use a ball as an object, it will often seem to suddenly appear “out of 

nowhere.” This will result in a large difference with the previous reading, 

which makes the robot behave as if something were moving towards it very 

quickly. 

Using Threshold Values  

We will start by measuring movement, but what is actually moving: the 

robot, the ball or both? We obtain the speed of the moving object by 

subtracting the robot’s own speed from that of the object. In order to do 

this, we need to use the Threshold variable in our program. The robot 

should not react to very low sensor values (very slow movements). So, we 

use a threshold value in our code. This helps to determine if a sensor 

value is relevant. We can also use a variable called Scared to store the 

value that makes a robot frightened. The larger you make this value, the 

harder it will be for the robot to become scared. 

 

9A.1 Assignment: Detecting Movements 

 Load program 8D.1 and call it 9A.1 – Movement Detection. 

 We will develop some code to detect movement. 

 In particular, we will check if the movement is slow or fast and if it is 

towards the robot or away from it. We will integrate this routine into 

the Main program and allow the robot react to this information. 

 The code looks like that in FlowCode 5. You will find the explanation 

below. 

 



RLT-v4.3 Robotics 20 

  
FlowCode 5: the Modified Main Routine 

 

9A.1 Detecting Movements 

1 

 

We will need the following local variables: 

Distance – to measure the distance to an object; 

Previous – to store the previous distance measurement; 

Delta – to calculate the difference between the two 

measurements. This value determines the direction of the 

movement. A negative value is away from the robot; a 

positive value is toward the robot. 

Scared – is the threshold value that determines when the 

robot should become scared. This value has two functions: 

it compensates for the robot’s own speed and determines 

how easily the robot becomes scared. 

2 

 

We must make two distance measurements to calculate 

the speed. The fist one is stored in Previous, the second in 

Distance. Set a fixed 0.5 seconds time-lapse between the 

two measurements. You can, however, make this time 

shorter or longer. The longer the time, the larger the 

distance that can be travelled, but nothing else can be 

done while the program is waiting and this could become a 

problem if the period is too long. 

3 

 

First, check if an object is in sight, as we did in the previous 

version. If nothing is happening, we just leave the 

subroutine. 

In the previous version, we then checked if the distance to 

an object was short, which made the robot scared. We now 

want the robot to get scared when something drives 

towards it and not when something is only nearby. So, the 

movement of the object is important. 

4 

 

We first calculate the difference. Then we subtract the 

threshold value. This difference, which is positive if 

something is moving towards the robot, is used to 

determine if the robot calls FleeBehavior. 



RLT-v4.3 Robotics 21 

5 

 

If nothing is moving or if it is moving slower than the 

threshold value, the robot becomes curious and 

CuriousBehavior is called. Complete the program and test 

it. 

It is hard to frighten the robot. You have to move the ball 

towards the robot and then check the LCD screen to see if 

the robot has become scared. This is more difficult than it 

seems. One way of testing it is to use the debugger and go 

through the program step-by-step, manually changing the 

values that are read by the sensors and forcing the robot to 

take the desired course of action. 

 

If you program works fine, you can move on to the next 

part. 
 

 

It is now very important to make sure that the program works correctly. 

During the following steps, many things happen at the same time, so 

testing will becoming even more difficult. Start using the debugger. You 

may skip the next assignment, but it is very useful to learn how to use the 

debugger. 

9B.1 Assignment: Testing with the Debugger  

 Start your program on the simulator 

 Make sure that everything is ready so you can follow what is happening 

with your program step-by-step. 

 

9B.1 Testing with the Debugger 

1 

 

Start program 9A.1. Go to the Main subroutine and select 

the icon where the program checks if an object is nearby. 

Select the red ball from the Debugger icons. A red dot will 

appear in the upper left-hand corner of the selected icon. 

This indicates that a breakpoint has been inserted. Start 

the simulator. Press the start button on the NXT of the 

simulator. 

2 

 

As soon as the program reaches the breakpoint, it will 

stop and the pop-up break window will appear, on the 

right, above the icon with the breakpoint. 

Place your mouse pointer on the pin and drag the pop-up 

window to a position on your screen where it does not 

block your view of anything else. Select the Local 

Variables and observe their measured values. 

3 

 

Press the Step button in the debug window or in the 

RoboPAL menu (upper left). You will see the blue arrow 

(the highlight) move to the next icon. Press the Step 

button again and you will see what the program does. 

As the Delta has now become negative, the robot will 



RLT-v4.3 Robotics 22 

 

assume a Curious state. If you press the Run button next 

to the Step button, the program will continue until it 

reaches the next breakpoint. 

4 

 

Start the program with the Run button in the Debugger 

window until it stops at the next breakpoint. 

5 

 
 

Increase the value in the Distance variable to something 

like 850. Step through the program. You will see how the 

calculations are executed and how the program assumes 

the Scared state and then also calls the FleeBehavior 

subroutine. As both FleeBehavior and CuriousBehavior 

have not been created yet, nothing will really happen. 

6 

 

Select the icon with the breakpoint and press the red ball 

in the icon bar again. This removes the breakpoint and 

when you select Run, the program continues without 

stopping. 

7 

 

If during its explorations the robot (or the ball) moves 

outside of the field, you will not be able to see it or pick it 

up. The simulator will put the robot or the ball back in the 

middle of the field after a short time. 

If you put the ball in front of the robot, the robot will return 

to its initial state and become Curious, but not do 

anything else (yet). 

 

The idea is that we can test and observe the steps of our program as we 

develop it. Make sure that you test every branch of your program at least 

once. You must be sure that its logic is correct. In order to this, change the 

position of the robot and the ball on the simulator and make sure you have 

created the correct situation. Practice until you understand how to use the 

debugger. 

Using the State 

We are currently using the state set by the Reason step and observing 

whether the robot becomes scared or curious. Although the correct routine 

is called, neither is functional yet. We have already tested 

WanderBehavior. Now, we can also start developing and testing 

CuriousBehavior and FleeBehavior. 



RLT-v4.3 Robotics 23 

Making the Robot React - Curious 

We have already seen Curious behaviour in Part One. It is rather simple. As 

the sensor values are read by the Main loop, we will have no Sense step in 

this subroutine. The time spent moving towards an object is controlled by 

a counter, just as in WanderBehavior. Although we could do without it in 

this routine, we will include it in all three behaviour subroutines. The code 

is shown in FlowCode 6. 

 

   
FlowCode 6: Curious Behavior 

9C.1 Assignment: Acting Curious 

 Name your program 9C.1 – Curious Behavior  

 Open the subroutine CuriousBehavior. 

 Develop the program using the instructions provided below. 

 Test the program in the simulator. First, check what the robot is doing. 

Then, use the debugger and observe how the robot reacts, step by 

step. 

 

9C.1 Acting Curious 

1 

 

We need the following local variables: 

Speed – the speed at which the robot starts moving; 

Counter – how long the robot has been moving; 

2 

 

Increase the counter and check if it has reached the 

maximum value. Although we could do this without a 

counter, it helps to maintain a uniformity of behavior and 

also serves as a preparation for the changes that we will 

make in the next chapter. 

3 

 

If the counter has not reached the maximum value yet, the 

robot will drive towards the object for a fixed amount of 

time. 

4 

 

Start the simulator and observe how the robot reacts. You 

may also test the program on the NXT with a ball or your 

hand as an object. 



RLT-v4.3 Robotics 24 

Making the Robot React - Scared  

The robot can determine its states, but it also needs to act accordingly. It 

must move away from an object until it reaches a safe distance. So, it will 

make a slight turn away from the object and then drive backward. It may 

repeat this action one or more times. FlowCode 7 shows how this is done. 

 

   
FlowCode 7: Flee Behavior 
 

9C.2 Assignment: Getting Scared 

 Name your program 9C.2 – Flee and Curious Behavior. 

 Develop your program like the FlowCode above. The explanation is 

provided below. 

 Use Breakpoints and the Step facility to check exactly what your 

program is doing. 

 

 

9C.2 Flee Behavior 

1 

 

We will need the following local variables: 

Speed – the speed at which the robot moves away from an 

object; 

Time – how long the robot moves away from an object 

(using a randomizer); 

Counter – how long the robot stays scared. 

2 

 

There is no Sense step in this subroutine as the Main 

routine determines whether the robot should become 

scared. 

We need to determine how long the frightened reaction will 

last. This is done with a counter that is set to 2 by default, 

but can be changed. 

3 

 

Every time the robot executes a scared reaction, it will 

make a slight turn to change direction and move away. 

Subsequently, a randomizer determines for how long the 

robot moves away and at what speed to drive backward. 

4 

 

Complete the program and test it in the simulator. To scare 

the robot you will have to move the ball towards it. 

Alternatively, you may use the debugger to change the 

sensor values manually. 

 



RLT-v4.3 Robotics 25 

9C.3 Assignment: Becoming Scared 

 Name your program 9C.3 – Flee and Curious Behavior. 

 Upload your program to the NXT and test it on the robot. 

 You will probably have to make some changes to your program as the 

NXT will react differently from the simulator. 

 Scaring your robot is easy: just hold your hand or a ball right in front of 

it. 

Scaring the Robot 

During testing, you may notice that it is not easy to scare the robot, but 

this will happen only if it drives quite near to the ball. The main reason for 

this is that there are no objects coming towards the robot. You can drag 

the ball towards the robot, but it is not easy to do this at the right time. 

What you need is an object that is actually moving towards the robot. 

9D.1 Assignment: Scaring the Robot 

 Save your program as 9D.1 – Flee and Curious Behavior. 

 We already have an object that can move towards the robot: another 

robot. If we create a second robot and let it move towards the first 

robot, we will have our moving object. 

 Remove the ball from the playing field, select a second robot 

(RobotNXT – Rescue) and tell the robot (in the properties of the second 

robot) that it should start with the Main program, too. 

 Use the Breakpoint and the Step facilities of the simulator to check 

what the program is doing. 

 You now have two moving objects and you can make the robots much 

more sensitive and let them react better to one another. 

 Take into account that using two robots in the simulator will use up 

much more processor time and consequently slow it down. This may 

also make it behave erratically. This is especially true for slower 

computers with a minimum of main memory. 

 You now also have two control panels. As soon as you start one of the 

two robots, the other will start automatically. 

 



RLT-v4.3 Robotics 26 

 
Fig 5: Automatic Container Transporter, Rotterdam 
Harbour 

   
Fig 4: Simulation with two Robots 

9.6 In Practice 

Naturally, we have no real use for robots that get scared or curious, but 

the ability to detect objects in a given area or objects that are moving 

towards a robot is very useful. Various car manufacturers are working on a 

new generations of automobiles that will be able detect pedestrians in 

front of the car or about to cross a street. 

 

The intelligent computers in cars use a camera to detect pedestrians and 

than quickly calculate if the car, based on its current speed, will be able 

to brake in time.  

If this is the case, the car will take over if the driver does not react in 

time. If the breaking distance is too short and the pedestrian risks being 

run over by the car, the bonnet will tilt at an upward angle, so the 

pedestrian will slide off the car if he should be hit by the car. 

 

Another example is an autonomous 

vehicle such as the unmanned 

trains that are used in harbours. It 

is important that these vehicles are 

capable of detecting obstacles or 

living creatures in front of them. If 

they do, they emit a warning and 

brake to avoid a collision. 

These vehicles are often guided by 

wires embedded in the road surface 

and use their sensors to detect 

pedestrians and other obstacles. 

 

 



RLT-v4.3 Robotics 27 

9.7 Test 

1. How reliable are the sensors on your robot? 

2. What factors may disturb sensors? 

3. How can you eliminate these disturbing factors? 

4. What does a robot need to measure the speed and direction of a 

moving object? 

5. Provide an example of a useful intrinsic (internal) sensor for a robot 

Exam 9E: Written Test on Chapters 8 & 9 

These chapters are concluded by a written examination. 

 



RLT-v4.3 Robotics 28 

10. Control Systems 

We already have seen several ways in which to control a robot. The Sense-

Reason-Act loop is the most important one, but there are several other 

algorithms that can be used, too. The most important principle is 

feedback. A feedback loop ensures that a desired situation is maintained 

through the use of a so-called controller and guarantees a stable situation. 

The controller is one of the most important control systems and can be 

found both in industrial and domestic systems. 

10.1 You will learn 

 several aspects of control algorithms and real-time control 

 the basic principles of feedback loops in control systems 

10.2 You will need 

 a NXT robot and a ball 

 a computer with RoboPAL 

 a Grid field 

10.3 You will experiment with 

 making the robot avoid obstacles 

 developing a program to follow a ball 

 

Type # Assignment Description 
 10A Adaptive Behavior Avoiding Obstacles 

 10A.1 StayInField Staying within the field 

 10A.2 StayInField Calling StayInField 

 10B Adaptive Behavior Proportional controller 

 10B.1 CuriousBehavior Making Curious behvaior proportional 

 10B.2 Obstacle Varying the speed 

 10B.3 Testing Testing with an obstacle 
 10C Object Tracking Following and avoiding objects 

 10C.1 Curious Behavior Follow and avoid an object 

10.4 After completing this chapter, you will be able 

 to explain the principle of a feedback loop with your own example  

 to indicate what happens when a robot controller only works with ‘on’ 

and ‘off’ and the motors run at full speed 

 

 



RLT-v4.3 Robotics 29 

10.5 Explanation 

This chapter deals with control technology and, in particular, control 

algorithms. An important part of this - real-time control - has already 

been discussed. The timing aspect is essential here. The Line-Follower is 

an example of real-time control. If the robot does not react in time, it may 

overshoot the line and completely lose the track. 

We are going to look at the most important control principles and work out 

a simple example by tackling a control problem. You will have to make 

sure that the robot no longer drives off the field. We will do this by 

continually making sure the robot detects its blue surroundings.  

The second adaptation concerns the detection of obstacles. We will change 

CuriousBehavior so that the speed of the robot is related to its distance 

from an object. The closer it gets, the slower it will move. This will ensure 

that the robot no longer bumps into the ball (or any other object) and 

consequently the ball will stay closer to the robot. 

Feedback 

Feedback is one of the most important principles in control theory. If you 

want a robot to reach a given point, you have to control its behavior and 

make sure that it continually checks that it is on the right track.  

With the line-follower, we used the sensors to keep the robot on track. 

This is an example of a feedback mechanism. The sensor detects the line. 

If the robot moves away from the line, the sensors no longer detects it and 

turn the robot back towards the line. 

Staying on the Field 

We have already seen that the robot has a tendency to drive off the field. 

After a while, the simulator puts it back at the centre of the field. By 

making the randomizer use more right than left turns, we can increase the 

chance that the robot will stay within the field. However, there is a better 

way of doing this. We can use the field sensors to check if it is about to 

drive off the field. 

 

In this optional assignment, you will develop a new subroutine to detect if 

the robot has left the field and make it return to it. In order to accomplish 

this, one of the field sensors needs to check for the colour blue. 

 

 



RLT-v4.3 Robotics 30 

 
FlowCode 8: StayInField Subroutine 
 

10A.1 Assignment: Stay on the Field 

 Change the program to make sure that the robot does not drive off the 

field. Call your program 10A.1 – Adaptive Behavior. 

 If the robot drives off the field, its field sensors will detect a different 

colour. The idea is that the robot should then take action to return to 

the field. 

 Develop the subroutine as explained below and try it out by having the 

robot directly call the subroutine. You must move the robot manually 

to make it turn back to the field. In order for the program to work 

correctly you first have to place the robot outside the field manually. 

 

10A.1 Staying on the Field 

1 

 

Make a local variable with the name DetectField that will not 

be used as a parameter. 

2 

 

First, we need to check that the robot is still on the field. We do 

this by using the left field sensor. As the surface is white, we 

need to look for a high value. If this is correct, we’re doing OK. 

3 

 

If the robot has left the field, a loop starts to check that we 

return to it. As long as it does not detect the field, the robot 

needs to do something to return to it. 

4 

 

If the field is detected again, the robot must turn for about a 

quarter of a second (in the same loop) and then return to the 

original subroutine. 



RLT-v4.3 Robotics 31 

5 

 

If the field is not detected, the robot must move backward and 

restart the loop to check once again if it is back on the field. 

6 

 

Start the simulator and indicate (in the properties) that the 

robot needs to execute StayInField directly. Drag the robot out 

of the field and press the RUN button in the control panel of 

the NXT. Make sure that you press the RUN button every time, 

because the program stops as soon as the robot is back on 

the field. 

 

10A.2 Assignment: Calling StayInField 

 Name your program 10A.2 

 Make sure that StayInField is called from your program. Which is the 

best place to do this? 

 Find out which subroutine is the most logical to call StayInField.  

 Hint: it does not make sense to call StayInField from a subroutine that 

will not cause the robot to drive off the field. 

 Insert a call to StayInField in the selected subroutine. 

 Insert (in its properties) that the robot must start with the Main 

program. 

 Test your program on the simulator. 

Proportional Behaviour 

Feedback is an important principle, but if it is organized with an all-or-

nothing approach, the reaction may be too large or too small. This type of 

feedback loop is called discrete feedback. It is best to regulate a deviation 

based on its magnitude. We call this proportional feedback. 

This allows us to relate a scared reaction to the speed at which an object 

is coming towards the robot. If the object is moving fast, the robot will 

move backward quickly; if the object is moving slowly, the reaction can 

also be slow. The principle of proportional feedback is found in many 

control systems and controllers. 

Proportional feedback control systems are more complicated and therefore 

more expensive than discrete controllers. 

 

The thermostat of the central heating in your home, for example, is a 

discrete controller. If it is too cold, the heater turns on. If it is warm 

enough, the heater turns off. However, the heater does not know how 

large the difference between the actual temperature and the desired 

temperature actually is. So, when the thermostat has reached the desired 

temperature, the heat in the radiators continues to heat the room and the 

temperature will rise beyond that set by the thermostat.  



RLT-v4.3 Robotics 32 

This phenomenon is called overshoot. Thermostats that make a heater 

work proportionally to the difference in temperature do not overshoot. 

Most domestic heating systems, however, do not have such a feature. So 

there is no sense in setting the thermostat extra high when it is cold, it 

will not heat any more, just longer. 

 

We will now modify our program to make the reaction to an approaching 

object proportional. 

 

 
FlowCode 9: Making Curious Behavior Proportional 

10B.1 Assignment: Make CuriousBehavior Proportional 

 Name your program 10B.1  

 In this assignment, we will make the robot react proportionally. 

 If the robot becomes curious, it will drive towards the ball. If it were 

to drive toward the ball at a continuous speed, it would bump into it 

and cause it to roll away. 

 We want the robot to drive slower as it gets closer to the ball. 

 The necessary modifications are explained below. 

 

10B.1 Make CuriousBehavior Proportional 

1 

 

In order to react proportionally, the robot needs to know the 

distance to the ball. This value is not used in 

CuriousBehavior, so we must read the sensor value. We 

need to add a Sense step to read this distance. Do not 

forget to include a Distance variable to store the value. 

2 

 

Include two icons to make a calculation in the routine in 

which the robot drives towards the ball. The first one stores 

the distance that was measured in the Sense step. If you 

subtract this value from 100% you get the distance that 

must be covered, which continues getting smaller as the 

robot moves forward. 

3 

 

Continue this calculation by dividing the result by 4. This 

will give you a number that is the speed at which the robot 

needs to move. 



RLT-v4.3 Robotics 33 

4 

 

As the speed is corrected in each cycle of the loop 

counter, the robot will drive slower and slower. Change 

your program, save it and test it on the simulator. Watch 

how the robot is much more “careful” with the ball. 

 

 

 
FlowCode: 10 FleeBehavior Subroutine 

 

10B.2 Assignment: Varying the Speed 

 FleeBehavior moves the robot backward a little and changes the 

Steering at random. 

 In order to obtain a proportional reaction, you need to change the 

Speed by assigning the value of Delta to Speed (instead of the fixed 

value that is currently being used). 

 Notice that this time you are passing a parameter to FleeBehavior. 

 Make all necessary changes and then test this version on the simulator. 

10B.3 Assignment: Testing with an Obstacle 

 Apply all changes and test the program. 

 You will have to tweak the used values to make the reactions more 

natural. 

 Check that your program works well with the NXT and a real obstacle. 

More Proportional Control 

Now that you know what proportional control is, you might want to test it in 

different circumstances. Remember that you used a line follower in Part 2 

and that the robot reacted to detecting the black line. This is a discrete 

feedback loop.  

In order to detect the black line, the sensors check a range of values. But if 

the sensor is halfway the green field and the black line, it will see a value that 

is a little higher then that of the pure colour black.  

By making the feedback loop proportional, you can make the robot react to 

the black line more accurately. What can be done here is to first calculate the 



RLT-v4.3 Robotics 34 

difference between the sensor reading and the value for black. The closer 

the value is to true black, the larger the correction should be. That way the 

line follower will be capable of following the line much better and you may 

achieve higher speeds. 

Follow and Avoid 

You will complete this final assignment on your own. Use a ball as the 

object and change CuriousBehavior so that the robot moves towards the 

ball and touches it lightly. The ball will then roll away. This will make the 

robot either scared or curious. You will also need to develop a new 

behaviour - AngryBehavior - to make the robot move faster and faster. You 

are using two robots. The result of your changes will be that the robots 

seem to play with the ball, but are afraid of fast movements. 

10C.1 Assignment: Follow and Avoid an Object 

 Make a new program called 10C.1 

 Add a second robot and give it a different behavior. 

 The new robot gets angry when it sees the ball and drives faster and 

faster as it gets closer to the ball. 

 As soon as an object moves towards the first robot, it must get scared 

and react proportionally to the speed at which the object is moving. 

 When the object has moved away far enough, both robots start to 

search for it again. 

 As the ball is usually not moving towards the robot, the first robot will 

get scared by the other robot and not by the ball and will preferably 

chase the ball, but move away from the other robot. Change your 

program so this happens. 

 The idea is for you find out how to make a program exhibit interesting 

behavior in which the robot plays with the ball. 

 This is your final assignment. Your grade will depend on how well you 

develop your program. 

 The more interesting the behavior is, the higher your grade will be. 

Also, show your teacher how you changed the program. 

 Have fun making and testing your program. 

 You may also select to make a proportional line follower; provided 

your teacher lets you do that and you have a rescue field at hand. 

 



RLT-v4.3 Robotics 35 

 
Fig 7: Servomotor and Steering of Model Car 
 

10.6 In Practice 

Feedback is a very important and frequently used control structure. We 

find examples of it in almost all devices. We have already seen how a 

thermostat works and determined that it is a discrete controller. On the 

other hand, the temperature control of an automatic shower faucet has a 

mechanical feedback system that makes sure the water will be mixed to 

the desired temperature. 

 

Servomotors have a proportional controller that ensures that the desired 

position is reached and maintained. One example of a servomotor is the 

tail rotor of a helicopter. It makes sure the helicopter does not start 

spinning around on its axis. A gyroscope continually measures the position 

of the tail and modifies the tail rotor speed so that a helicopter can stay in 

the desired position. Most airplanes are also equipped with this kind of 

feedback system. Even model racecars have this kind of feature to control 

the wheels. 

 

 

 

 

 

 

 

 
 

 

Feedback systems do not always need to be electronic. The control valve 

of an old-fashioned steam engine is a good example of a mechanical 

construction that makes sure the pressure in a steam chamber does not get 

too high, but at the same time makes sure the steam does not escape 

when the pressure is too low. 

 

Yet another example is the controller of your WII or the newer Kinect 

sensor of the Xbox 360. They both have all kinds of feedback systems that 

make sure that your computer can detect the speed and direction of your 

movements. This is accomplished with some very sophisticated sensors, 

including a tiny camera and in the WII controller an acceleration sensor. 

The acceleration sensor was first developed for use with airbags to 

instantly detect if a car is about to crash. These same sensors are now also 

used in WIIs. 

 

 

 



RLT-v4.3 Robotics 36 

10.7 Test 

1. Why do we use feedback systems? 

2. What is the difference between a discrete and a proportional feedback 

system? 

3. Provide an example of the use of a feedback loop in your home and 

explain what kind of feedback it is. 

4. The final part is based on your program: the better it allows the robot 

to chase the ball, the higher your grade will be. 


